The role of oocyte transcription, the 5'UTR, and translation repression and derepression in Drosophila gurken mRNA and protein localization. (17/31686)

The establishment of the major body axes of the Drosophila egg and future embryo requires strict regulation of gurken mRNA and protein localization. Here, we show that grk mRNA and protein localization is dependent on synthesis of grk transcripts in the oocyte nucleus and on RNA localization elements in the 5' portion of the transcript. We also show that gurken mRNA and protein localization is dependent on region-specific translation of gurken transcripts and identify K10 as a probable negative regulator of gurken translation.  (+info)

Role of cytokine signaling molecules in erythroid differentiation of mouse fetal liver hematopoietic cells: functional analysis of signaling molecules by retrovirus-mediated expression. (18/31686)

Erythropoietin (EPO) and its cell surface receptor (EPOR) play a central role in proliferation, differentiation, and survival of erythroid progenitors. Signals induced by EPO have been studied extensively by using erythroid as well as nonerythroid cell lines, and various controversial results have been reported as to the role of signaling molecules in erythroid differentiation. Here we describe a novel approach to analyze the EPO signaling by using primary mouse fetal liver hematopoietic cells to avoid possible artifacts due to established cell lines. Our strategy is based on high-titer retrovirus vectors with a bicistronic expression system consisting of an internal ribosome entry site (IRES) and green fluorescent protein (GFP). By placing the cDNA for a signaling molecule in front of IRES-GFP, virus-infected cells can be viably sorted by fluorescence-activated cell sorter, and the effect of expression of the signaling molecule can be assessed. By using this system, expression of cell-survival genes such as Bcl-2 and Bcl-XL was found to enhance erythroid colony formation from colony-forming unit-erythroid (CFU-E) in response to EPO. However, their expression was not sufficient for erythroid colony formation from CFU-E alone, indicating that EPO induces signals for erythroid differentiation. To examine the role of EPOR tyrosine residues in erythroid differentiation, we introduced a chimeric EGFR-EPOR receptor, which has the extracellular domain of the EGF receptor and the intracellular domain of the EPOR, as well as a mutant EGFR-EPOR in which all the cytoplasmic tyrosine residues are replaced with phenylalanine, and found that tyrosine residues of EPOR are essential for erythroid colony formation from CFU-E. We further analyzed the function of the downstream signaling molecules by expressing modified signaling molecules and found that both JAK2/STAT5 and Ras, two major signaling pathways activated by EPOR, are involved in full erythroid differentiation.  (+info)

Characterization of beta cells developed in vitro from rat embryonic pancreatic epithelium. (19/31686)

The present study evaluates the development and functional properties of beta cells differentiated in vitro. The authors have previously demonstrated that when E12.5 rat pancreatic rudiments are cultured in vitro in the absence of mesenchyme, the majority of the epithelial cells differentiate into endocrine beta cells. Thus, depletion of the mesenchyme provokes the expansion of endocrine tissue at the expense of exocrine tissue. The potential use of this procedure for the production of beta cells led the authors to characterize the beta cells differentiated in this model and to compare their properties with those of the endocrine cells of the embryonic and adult pancreas. This study shows that the beta cells that differentiate in vitro in the absence of mesenchyme express the homeodomain protein Nkx6.1, a transcription factor that is characteristic of adult mature beta cells. Further, electron microscopy analysis shows that these beta cells are highly granulated, and the ultrastructural analysis of the granules shows that they are characteristic of mature beta cells. The maturity of these granules was confirmed by a double-immunofluorescence study that demonstrated that Rab3A and SNAP-25, two proteins associated with the secretory pathway of insulin, are strongly expressed. Finally, the maturity of the differentiated beta cells in this model was confirmed when the cells responded to stimulation with 16 mM glucose by a 5-fold increase in insulin release. The authors conclude that the beta cells differentiated in vitro from rat embryonic pancreatic rudiments devoid of mesenchyme are mature beta cells.  (+info)

Multiple cis-acting regulatory regions are required for restricted spatio-temporal Hoxa5 gene expression. (20/31686)

Genetic analyses have revealed the essential role of the murine Hoxa5 gene for the correct specification of the cervical and upper thoracic region of the skeleton, and for the normal organogenesis and function of the respiratory tract, both structures expressing Hoxa5 during embryogenesis. To understand how the expression domains of the Hoxa5 gene are established during development, we have analyzed the cis-acting control regions mediating Hoxa5 gene expression using a transgenic approach. Four transcripts are derived from the Hoxa5 locus. The shortest and most abundant one displays a specific spatio-temporal profile of expression at earlier stages and in more anterior structures along the embryonic axis than the larger forms. We established that an 11.1 kilobase pair (kb) genomic fragment, extending from position -3.8 kb to +7.3 kb relative to Hoxa5 transcription initiation site, was sufficient to reproduce the temporal expression and substantially reconstitute the spatial pattern of the major Hoxa5 transcript. By deletion analyses, we identified a 2.1 kb fragment located downstream of the Hoxa5 gene that possesses mesodermal enhancer activity. Overall, the findings demonstrate that cis-acting regulatory elements essential for the correct expression of the major Hoxa5 transcript are located both upstream and downstream of the Hoxa5 coding sequences.  (+info)

Ectopic expression of the transforming growth factor beta type II receptor disrupts mesoderm organisation during mouse gastrulation. (21/31686)

Transforming growth factor beta (TGFbeta) regulates the cell cycle and extracellular matrix (ECM) deposition of many cells in vitro. We have analysed chimaeric mouse embryos generated from embryonic stem cells with abnormal receptor expression to study the effect of TGFbeta on these processes in vivo and the consequences for normal development. The binding receptor for TGFbeta, TbetaRII, is first detected in the embryo proper around day 8.5 in the heart. Ectopic expression of TbetaRII from the blastocyst stage onward resulted in an embryonic lethal around 9.5 dpc. Analysis of earlier stages revealed that the primitive streak of TbetaRII chimaeras failed to elongate. Furthermore, although cells passed through the streak and initially formed mesoderm, they tended to accumulate within the streak. These defects temporally and spatially paralleled the expression of the TGFbeta type I receptor, which is first expressed in the node and primitive streak. We present evidence that classical TGFbeta-induced growth inhibition was probably the cause of insufficient mesoderm being available for paraxial and axial structures. The results demonstrate that (1) TGFbeta mRNA and protein detected previously in early postimplantation embryos is present as a biologically active ligand; and (2) assuming that ectopic expression of TbetaRII results in no other changes in ES cells, the absence of TbetaRII is the principle reason why the embryo proper is unresponsive to TGFbeta ligand until after gastrulation.  (+info)

Selective expression of purinoceptor cP2Y1 suggests a role for nucleotide signalling in development of the chick embryo. (22/31686)

Responses to extracellular nucleotides (e.g., ATP, ADP, etc.) have been demonstrated in a number of embryonic cell types suggesting they may be important signalling molecules during embryonic development. Here the authors describe for the first time the expression of a G-protein-coupled receptor for extracellular ATP, chick P2Y1 (cP2Y1), during embryonic development of the chick. During the first 10 days of embryonic development, cP2Y1 is expressed in a developmentally regulated manner in the limb buds, mesonephros, brain, somites, and facial primordia, suggesting that this receptor may have a role in the development of each of these systems.  (+info)

Rac1 is required for the formation of three germ layers during gastrulation. (23/31686)

The Rac1, a member of the Rho family proteins, regulates actin organization of cytoskeleton and cell adhesion. We used genetic analysis to elucidate the role of Rac1 in mouse embryonic development. The rac1 deficient embryos showed numerous cell deaths in the space between the embryonic ectoderm and endoderm at the primitive streak stage. Investigation of the primary epiblast culture isolated from rac1 deficient embryos indicated that Rac1 is involved in lamellipodia formation, cell adhesion and cell migration in vivo. These results suggest that Rac1-mediated cell adhesion is essential for the formation of three germ layers during gastrulation.  (+info)

Ryk is expressed in a differentiation-specific manner in epithelial tissues and is strongly induced in decidualizing uterine stroma. (24/31686)

Ryk is a ubiquitously expressed tyrosine kinase-like receptor of unknown activity and associations. We examined ryk expression in adult mouse epithelial tissues and during embryonic development at the histological level. Ryk RNA is present at greatly increased levels in cells at particular stages of epithelial differentiation: the basal layer of skin and tongue epithelia, the intervillous layer and some crypt bases of the intestine and the lower matrix region of the hair follicle. Although ryk RNA is expressed at similar levels in a variety of tissues from embryonic day 10.5 to 18.5, specific induction of ryk RNA can be seen by in situ hybridization in the basal layer of skin and hair follicle at day 15.5-16.5, and protein staining localizes to the hair follicle by immunohistochemistry. At day 4.5 and 6.5, little if any ryk is present in the blastocyst, but it is transiently induced at a high level in mature decidual cells of the uterine stroma. We review a number of independent isolations of ryk, including fruit fly and nematode members of the ryk family. Because ryk is induced in epithelial cells seeking a final place in a differentiated tissue, or during remodeling of the endometrium, and a homologous gene, derailed, is known to regulate muscle and nerve target seeking in Drosophila, ryk may also be involved in cellular recognition of appropriate context.  (+info)