Parental expression of the chromodomain protein Pdd1p is required for completion of programmed DNA elimination and nuclear differentiation. (65/2949)

Thousands of DNA elimination events occur during somatic differentiation of many ciliated protozoa. In Tetrahymena, the eliminated DNA aggregates into submacronuclear structures containing the protein Pdd1p, a member of the chromodomain family. We disrupted somatic copies of PDD1, eliminating parental expression of the gene early in the sexual phase of the life cycle. Even though zygotic expression, from the undisrupted germline PDD1 copy, is activated before DNA elimination normally occurs, the somatic knockout cells suffer defects in DNA elimination, genome endoduplication, and nuclear resorption, and eventually die, demonstrating that PDD1 is essential and suggesting Pdd1p is directly involved in establishing a chromatin structure required for DNA elimination.  (+info)

Molecular characterization of the protein encoded by the Hermansky-Pudlak syndrome type 1 gene. (66/2949)

Hermansky-Pudlak syndrome (HPS) comprises a group of genetic disorders characterized by defective lysosome-related organelles. The most common form of HPS (HPS type 1) is caused by mutations in a gene encoding a protein with no homology to any other known protein. Here we report the identification and biochemical characterization of this gene product, termed HPS1p. Endogenous HPS1p was detected in a wide variety of human cell lines and exhibited an electrophoretic mobility corresponding to a protein of approximately 80 kDa. In contrast to previous theoretical analysis predicting that HPS1p is an integral membrane protein, we found that this protein was predominantly cytosolic, with a small amount being peripherally associated with membranes. The sedimentation coefficient of the soluble form of HPS1p was approximately 6 S as inferred from ultracentrifugation on sucrose gradients. HPS1p-deficient cells derived from patients with HPS type 1 displayed normal distribution and trafficking of the lysosomal membrane proteins, CD63 and Lamp-1. This was in contrast to cells from HPS type 2 patients, having mutations in the beta3A subunit of the AP-3 adaptor complex, which exhibited increased routing of these lysosomal proteins through the plasma membrane. Similar analyses performed on fibroblasts from 10 different mouse models of HPS revealed that only the AP-3 mutants pearl and mocha display increased trafficking of Lamp-1 through the plasma membrane. Taken together, these observations suggest that the product of the HPS1 gene is a cytosolic protein capable of associating with membranes and involved in the biogenesis and/or function of lysosome-related organelles by a mechanism distinct from that dependent on the AP-3 complex.  (+info)

The probability of duplicate gene preservation by subfunctionalization. (67/2949)

It has often been argued that gene-duplication events are most commonly followed by a mutational event that silences one member of the pair, while on rare occasions both members of the pair are preserved as one acquires a mutation with a beneficial function and the other retains the original function. However, empirical evidence from genome duplication events suggests that gene duplicates are preserved in genomes far more commonly and for periods far in excess of the expectations under this model, and whereas some gene duplicates clearly evolve new functions, there is little evidence that this is the most common mechanism of duplicate-gene preservation. An alternative hypothesis is that gene duplicates are frequently preserved by subfunctionalization, whereby both members of a pair experience degenerative mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We consider the ways in which the probability of duplicate-gene preservation by such complementary mutations is modified by aspects of gene structure, degree of linkage, mutation rates and effects, and population size. Even if most mutations cause complete loss-of-subfunction, the probability of duplicate-gene preservation can be appreciable if the long-term effective population size is on the order of 10(5) or smaller, especially if there are more than two independently mutable subfunctions per locus. Even a moderate incidence of partial loss-of-function mutations greatly elevates the probability of preservation. The model proposed herein leads to quantitative predictions that are consistent with observations on the frequency of long-term duplicate gene preservation and with observations that indicate that a common fate of the members of duplicate-gene pairs is the partitioning of tissue-specific patterns of expression of the ancestral gene.  (+info)

Two cases of myeloid disorders and a t(8;12) (q12;p13). (68/2949)

BACKGROUND AND OBJECTIVE: Rearrangements of the short arm of chromosome 12 have been described in different hematologic malignancies. Some of these abnormalities showed a rearrangement of the ETV6 gene. We studied the 12p region in one case with a t(8;12)(q12;p13) by fluorescence in situ hybridization (FISH). DESIGN AND METHODS: We have identified a chromosome translocation, t(8;12)(q12;p13) in two patients with myeloid disorders; one with acute myelogenous leukemia (AML) and one with refractory anemia (RA). FISH studies with specific probes (cosmids and YACs) for the 12p region were used to investigate one case. RESULTS: FISH studies demonstrated hemizygous loss of the ETV6 and CDKN1B regions and two copies of the CCDN2 locus, as a result of the balanced translocation and an additional copy of the der(8). INTERPRETATION AND CONCLUSIONS: Myeloid diseases with t(8;12)(q12;p13) have an interstitial deletion of 12p, including the ETV6 and CDKN1B regions. A duplication of CCDN2 locus can also be found.  (+info)

Duplication of 7p11.2-p13, including GRB10, in Silver-Russell syndrome. (69/2949)

Silver-Russell syndrome (SRS) is characterized by pre- and postnatal growth failure and other dysmorphic features. The syndrome is genetically heterogeneous, but maternal uniparental disomy of chromosome 7 has been demonstrated in approximately 7% of cases. This suggests that at least one gene on chromosome 7 is imprinted and involved in the pathogenesis of SRS. We have identified a de novo duplication of 7p11.2-p13 in a proband with features characteristic of SRS. FISH confirmed the presence of a tandem duplication encompassing the genes for growth factor receptor-binding protein 10 (GRB10) and insulin-like growth factor-binding proteins 1 and 3 (IGFBP1 and -3) but not that for epidermal growth factor-receptor (EGFR). Microsatellite markers showed that the duplication was of maternal origin. These findings provide the first evidence that SRS may result from overexpression of a maternally expressed imprinted gene, rather than from absent expression of a paternally expressed gene. GRB10 lies within the duplicated region and is a strong candidate, since it is a known growth suppressor. Furthermore, the mouse homologue (Grb10/Meg1) is reported to be maternally expressed and maps to the imprinted region of proximal mouse chromosome 11 that demonstrates prenatal growth failure when it is maternally disomic. We have demonstrated that the GRB10 genomic interval replicates asynchronously in human lymphocytes, suggestive of imprinting. An additional 36 SRS probands were investigated for duplication of GRB10, but none were found. However, it remains possible that GRB10 and/or other genes within 7p11.2-p13 are responsible for some cases of SRS.  (+info)

Mamu-I: a novel primate MHC class I B-related locus with unusually low variability. (70/2949)

The rhesus macaque is an important animal model for several human diseases and organ transplantation. Therefore, definition of the MHC of this species is crucial to the development of these models. Unfortunately, unlike humans, lymphocytes from a single rhesus macaque express up to 12 different MHC class I cDNAs. From which locus these various alleles are derived is unclear. In our attempts to define the MHC class I loci of the rhesus macaque, we have identified an unusual MHC class I locus, Mamu-I. We isolated 26 I locus alleles from three different macaque species but not from three other Cercopithecine genera, suggesting that the I locus is the result of a recent duplication of the B locus occurring after the divergence of macaques from the ancestor of the other extant Cercopithecine genera. Mamu-I mRNA transcripts were detected in all tissues examined and Mamu-I protein was produced in rhesus B lymphoblastoid cell lines. Furthermore, Mamu-I protein was detected by flow cytometry on the surface of human 721.221 cells transfected with Mamu-I. In contrast to the polymorphism present at this locus, there is unusually low sequence variability, with the mean number of nucleotide differences between alleles being only 3.6 nt. Therefore, Mamu-I is less variable than any other polymorphic MHC class I locus described to date. Additionally, no evidence for positive selection on the peptide binding region was observed. Together, these results suggest that Mamu-I is an MHC class I locus in primates that has features of both classical and nonclassical loci.  (+info)

The bacterial replicative helicase DnaB evolved from a RecA duplication. (71/2949)

The RecA/Rad51/DCM1 family of ATP-dependent recombinases plays a crucial role in genetic recombination and double-stranded DNA break repair in Archaea, Bacteria, and Eukaryota. DnaB is the replication fork helicase in all Bacteria. We show here that DnaB shares significant sequence similarity with RecA and Rad51/DMC1 and two other related families of ATPases, Sms and KaiC. The conserved region spans the entire ATP- and DNA-binding domain that consists of about 250 amino acid residues and includes 7 distinct motifs. Comparison with the three-dimensional structure of Escherichia coli RecA and phage T7 DnaB (gp4) reveals that the area of sequence conservation includes the central parallel beta-sheet and most of the connecting helices and loops as well as a smaller domain that consists of a amino-terminal helix and a carboxy-terminal beta-meander. Additionally, we show that animals, plants, and the malarial Plasmodium but not Saccharomyces cerevisiae encode a previously undetected DnaB homolog that might function in the mitochondria. The DnaB homolog from Arabidopsis also contains a DnaG-primase domain and the DnaB homolog from the nematode seems to contain an inactivated version of the primase. This domain organization is reminiscent of bacteriophage primases-helicases and suggests that DnaB might have been horizontally introduced into the nuclear eukaryotic genome via a phage vector. We hypothesize that DnaB originated from a duplication of a RecA-like ancestor after the divergence of the bacteria from Archaea and eukaryotes, which indicates that the replication fork helicases in Bacteria and Archaea/Eukaryota have evolved independently.  (+info)

Tumour-specific distribution of BRCA1 promoter region methylation supports a pathogenetic role in breast and ovarian cancer. (72/2949)

The role of BRCA1 in sporadic breast and ovarian cancers remains elusive. Direct involvement of BRCA1 in the development of breast and ovarian cancer is suggested by the finding that the BRCA1 promoter region CpG island is methylated in a proportion of breast and ovarian cancers. The aim of this study was to compare the incidence of BRCA1 promoter region methylation in tumours in which loss of BRCA1 has been shown to play a role in pathogenesis (breast and ovarian carcinomas) with the incidence in tumours in which BRCA1 is unlikely to play a role in pathogenesis. Promoter region hypermethylation was significantly more common (P < 0.008) in breast and ovarian cancer (6/38 tumours methylated) than in colon cancer (0/35 tumours methylated) or in leukaemias (0/19 samples methylated). The restriction of BRCA1 promoter region hypermethylation to breast and ovarian cancer is consistent with a pathogenetic role of BRCA1 promoter methylation in these tumours. We suggest that the rarity of observed BRCA1 mutations in sporadic breast and ovarian cancer is due to the greater likelihood of BRCA1 inactivation by non-mutational mechanisms such as methylation.  (+info)