(1/5148) Apontic binds the translational repressor Bruno and is implicated in regulation of oskar mRNA translation.

The product of the oskar gene directs posterior patterning in the Drosophila oocyte, where it must be deployed specifically at the posterior pole. Proper expression relies on the coordinated localization and translational control of the oskar mRNA. Translational repression prior to localization of the transcript is mediated, in part, by the Bruno protein, which binds to discrete sites in the 3' untranslated region of the oskar mRNA. To begin to understand how Bruno acts in translational repression, we performed a yeast two-hybrid screen to identify Bruno-interacting proteins. One interactor, described here, is the product of the apontic gene. Coimmunoprecipitation experiments lend biochemical support to the idea that Bruno and Apontic proteins physically interact in Drosophila. Genetic experiments using mutants defective in apontic and bruno reveal a functional interaction between these genes. Given this interaction, Apontic is likely to act together with Bruno in translational repression of oskar mRNA. Interestingly, Apontic, like Bruno, is an RNA-binding protein and specifically binds certain regions of the oskar mRNA 3' untranslated region.  (+info)

(2/5148) DMPK dosage alterations result in atrioventricular conduction abnormalities in a mouse myotonic dystrophy model.

Myotonic dystrophy (DM) is the most common form of muscular dystrophy and is caused by expansion of a CTG trinucleotide repeat on human chromosome 19. Patients with DM develop atrioventricular conduction disturbances, the principal cardiac manifestation of this disease. The etiology of the pathophysiological changes observed in DM has yet to be resolved. Haploinsufficiency of myotonic dystrophy protein kinase (DMPK), DM locus-associated homeodomain protein (DMAHP) and/or titration of RNA-binding proteins by expanded CUG sequences have been hypothesized to underlie the multi-system defects observed in DM. Using an in vivo murine electrophysiology study, we show that cardiac conduction is exquisitely sensitive to DMPK gene dosage. DMPK-/- mice develop cardiac conduction defects which include first-, second-, and third-degree atrioventricular (A-V) block. Our results demonstrate that the A-V node and the His-Purkinje regions of the conduction system are specifically compromised by DMPK loss. Importantly, DMPK+/- mice develop first-degree heart block, a conduction defect strikingly similar to that observed in DM patients. These results demonstrate that DMPK dosage is a critical element modulating cardiac conduction integrity and conclusively link haploinsufficiency of DMPK with cardiac disease in myotonic dystrophy.  (+info)

(3/5148) Down-regulation of RpS21, a putative translation initiation factor interacting with P40, produces viable minute imagos and larval lethality with overgrown hematopoietic organs and imaginal discs.

Down-regulation of the Drosophila ribosomal protein S21 gene (rpS21) causes a dominant weak Minute phenotype and recessively produces massive hyperplasia of the hematopoietic organs and moderate overgrowth of the imaginal discs during larval development. Here, we show that the S21 protein (RpS21) is bound to native 40S ribosomal subunits in a salt-labile association and is absent from polysomes, indicating that it acts as a translation initiation factor rather than as a core ribosomal protein. RpS21 can interact strongly with P40, a ribosomal peripheral protein encoded by the stubarista (sta) gene. Genetic studies reveal that P40 underexpression drastically enhances imaginal disc overgrowth in rpS21-deficient larvae, whereas viable combinations between rpS21 and sta affect the morphology of bristles, antennae, and aristae. These data demonstrate a strong interaction between components of the translation machinery and showed that their underexpression impairs the control of cell proliferation in both hematopoietic organs and imaginal discs.  (+info)

(4/5148) Cloning, molecular analysis and differential cell localisation of the p36 RACK analogue antigen from the parasite protozoon Crithidia fasciculata.

The family of the RACK molecules (receptors for activated C kinases) are present in all the species studied so far. In the genus Leishmania, these molecules also induce a strong immune reaction against the infection. We have cloned and characterised the gene that encodes the RACK analogue from the parasite trypanosomatid Crithidia fasciculata (CACK). The molecule seems to be encoded by two genes. The sequence analysis of the cloned open reading frame indicates the existence of a high degree of conservation not only with other members of the Trypanosomatidae but also with mammalians. The study of the protein kinase C phosphorylation sites shows the presence of three of them, shared with the mammalian species, additional to those present in the other protozoa suggesting a certain phylogenetic distance between the protozoon Crithidia fasciculata and the rest of the Trypanosomatidae. The CACK-encoded polypeptide shows an additional sequence of four amino acids at the carboxy-terminal end, which produces a different folding of the fragment with the presence of an alpha-helix instead of the beta-sheet usual in all the other species studied. A similar result is elicited at the amino-terminal end by the change of three amino acid residues. The immunolocalisation experiments show that the CACK displays a pattern with a distribution mainly at the plasma membrane, different from that of the related Leishmania species used as control, that displays a distribution close to the nucleus. Altogether, the data suggest that the existence of the structural differences found may have functional consequences.  (+info)

(5/5148) The origin and evolution of green algal and plant actins.

The Viridiplantae are subdivided into two groups: the Chlorophyta, which includes the Chlorophyceae, Trebouxiophyceae, Ulvophyceae, and Prasinophyceae; and the Streptophyta, which includes the Charophyceae and all land plants. Within the Streptophyta, the actin genes of the angiosperms diverge nearly simultaneously from each other before the separation of monocots and dicots. Previous evolutionary analyses have provided limited insights into the gene duplications that have produced these complex gene families. We address the origin and diversification of land plant actin genes by studying the phylogeny of actins within the green algae, ferns, and fern allies. Partial genomic sequences or cDNAs encoding actin were characterized from Cosmarium botrytis (Zygnematales), Selaginella apoda (Selaginellales), Anemia phyllitidis (Polypodiales), and Psilotum triquetrum (Psilotales). Selaginella contains at least two actin genes. One sequence (Ac2) diverges within a group of fern sequences that also includes the Psilotum Ac1 actin gene and one gymnosperm sequence (Cycas revoluta Cyc3). This clade is positioned outside of the angiosperm actin gene radiation. The second Selaginella sequence (Ac1) is the sister to all remaining land plant actin sequences, although the internal branches in this portion of the tree are very short. Use of complete actin-coding regions in phylogenetic analyses provides support for the separation of angiosperm actins into two classes. N-terminal "signature" sequence analyses support these groupings. One class (VEG) includes actin genes that are often expressed in vegetative structures. The second class (REP) includes actin genes that trace their ancestry within the vegetative actins and contains members that are largely expressed in reproductive structures. Analysis of intron positions within actin genes shows that sequences from both Selaginella and Cosmarium contain the conserved 20-3, 152-1, and 356-3 introns found in many members of the Streptophyta. In addition, the Cosmarium actin gene contains a novel intron at position 76-1.  (+info)

(6/5148) Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage.

Four expression cassettes containing strong fungal promoters, a signal sequence for protein translocation, a KEX protease cleavage site, and a synthetic gene (tha) encoding the sweet protein thaumatin II were used to overexpress this protein in Aspergillus awamori lpr66, a PepA protease-deficient strain. The best expression results were obtained with the gdhA promoter of A. awamori or with the gpdA promoter of Aspergillus nidulans. There was good correlation of tha gene dosage, transcript levels, and thaumatin secretion. The thaumatin gene was expressed as a transcript of the expected size in each construction (1.9 or 1.4 kb), and the transcript levels and thaumatin production rate decayed at the end of the growth phase, except in the double transformant TB2b1-44-GD5, in which secretion of thaumatin continued until 96 h. The recombinant thaumatin secreted by a high-production transformant was purified to homogeneity, giving one major component and two minor components. In all cases, cleavage of the fused protein occurred at the KEX recognition sequence. This work provides new expression systems in A. awamori that result in very high levels of thaumatin production.  (+info)

(7/5148) Amyloid precursor protein metabolism in fibroblasts from individuals with one, two or three copies of the amyloid precursor protein (APP) gene.

Protein kinase C (PKC)-activated modulation of amyloid precursor protein (APP) metabolism has been investigated in natural models of altered APP expression due to the presence of one, two or three copies of the APP gene. We show that levels of APP present in human skin fibroblasts strongly influence the effect of PKC activation of soluble APP (sAPP) release. Thus fibroblasts derived from a patient with a deletion in chromosome 21 including the APP locus (Delta21) had lower levels of both APP mRNA and cell-associated APP, and showed an exaggerated phorbol-ester-induced sAPP release, when compared with fibroblasts from control individuals. In contrast, fibroblasts from chromosome 21 trisomic Down's syndrome patients failed to show a concentration-dependent response to phorbol ester treatment. These results suggest that the levels of APP expression can affect the degree of response to PKC-mediated modulation of the metabolism of this protein.  (+info)

(8/5148) Der(22) syndrome and velo-cardio-facial syndrome/DiGeorge syndrome share a 1.5-Mb region of overlap on chromosome 22q11.

Derivative 22 (der[22]) syndrome is a rare disorder associated with multiple congenital anomalies, including profound mental retardation, preauricular skin tags or pits, and conotruncal heart defects. It can occur in offspring of carriers of the constitutional t(11;22)(q23;q11) translocation, owing to a 3:1 meiotic malsegregation event resulting in partial trisomy of chromosomes 11 and 22. The trisomic region on chromosome 22 overlaps the region hemizygously deleted in another congenital anomaly disorder, velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS). Most patients with VCFS/DGS have a similar 3-Mb deletion, whereas some have a nested distal deletion endpoint resulting in a 1.5-Mb deletion, and a few rare patients have unique deletions. To define the interval on 22q11 containing the t(11;22) breakpoint, haplotype analysis and FISH mapping were performed for five patients with der(22) syndrome. Analysis of all the patients was consistent with 3:1 meiotic malsegregation in the t(11;22) carrier parent. FISH-mapping studies showed that the t(11;22) breakpoint occurred in the same interval as the 1.5-Mb distal deletion breakpoint for VCFS. The deletion breakpoint of one VCFS patient with an unbalanced t(18;22) translocation also occurred in the same region. Hamster-human somatic hybrid cell lines from a patient with der(22) syndrome and a patient with VCFS showed that the breakpoints occurred in an interval containing low-copy repeats, distal to RANBP1 and proximal to ZNF74. The presence of low-copy repetitive sequences may confer susceptibility to chromosome rearrangements. A 1.5-Mb region of overlap on 22q11 in both syndromes suggests the presence of dosage-dependent genes in this interval.  (+info)