The identification and characterization of a novel splicing protein, Isy1p, of Saccharomyces cerevisiae. (49/19725)

We have identified a novel splicing factor, Isy1p, through two-hybrid screens for interacting proteins involved in nuclear pre-mRNA splicing. Isy1p was tagged and demonstrated to be part of the splicing machinery, associated with spliceosomes throughout the splicing reactions. At least a portion of the Isy1 protein population is associated with snRNAs; low levels of U5 and U6 snRNAs are coimmunoprecipitated specifically with Isy1p. When the ISY1 gene was knocked out, no defect in vegetative growth was observed. Using a sensitive in vivo splicing assay, however, we observed lower splicing efficiency in the isy1 null mutant compared to wild-type, indicating that Isy1 p is important in the optimization of splicing.  (+info)

Restoration of p16INK4A protein induces myogenic differentiation in RD rhabdomyosarcoma cells. (50/19725)

p16INK4A (p16) tumour suppressor induces growth arrest by inhibiting function of cyclin-dependent kinase (CDK)4 and CDK6. Homozygous p16 gene deletion is frequent in primary rhabdomyosarcoma (RMS) cells as well as derived cell lines. To confirm the significance of p16 gene deletion in tumour biology of RMS, a temperature-sensitive p16 mutant (E119G) gene was retrovirally transfected into the human RMS cell line RD, which has homozygous gene deletion of p16 gene. Decrease from 40 degrees C (restrictive) to 34 degrees C (permissive) culture temperature reduced CDK6-associated kinase activity and induced G1 growth arrest. Moreover, RD-p16 cells cultured under permissive condition demonstrated differentiated morphology coupled with expressions of myogenin and myosin light chain. These suggest that deletion of p16 gene may not only facilitate growth but also inhibit the myogenic differentiation of RD RMS cells.  (+info)

Human thyroid cancer cells as a source of iso-genic, iso-phenotypic cell lines with or without functional p53. (51/19725)

Differentiated thyroid carcinomas (in contrast to the rarer anaplastic form) are unusual among human cancers in displaying a remarkably low frequency of p53 mutation and appear to retain wild-type (wt) p53 function as assessed by the response of derived cell lines to DNA damage. Using one such cell line, K1, we have tested the effect of experimental abrogation of p53 function by generating matched sub-clones stably expressing either a neo control gene, a dominant-negative mutant p53 (143ala) or human papilloma virus protein HPV16 E6. Loss of p53 function in the latter two groups was confirmed by abolition of p53-dependent 'stress' responses including induction of the cyclin/CDK inhibitor p21WAF1 and G1/S arrest following DNA-damage. In contrast, no change was detected in the phenotype of 'unstressed' clones, with respect to any of the following parameters: proliferation rate in monolayer, serum-dependence for proliferation or survival, tumorigenicity, cellular morphology, or tissue-specific differentiation markers. The K1 line therefore represents a 'neutral' background with respect to p53 function, permitting the derivation of functionally p53 + or - clones which are not only iso-genic but also iso-phenotypic. Such a panel should be an ideal tool with which to test the p53-dependence of cellular stress responses, particularly the sensitivity to potential therapeutic agents, free from the confounding additional phenotypic differences which usually accompany loss of p53 function. The results also further support the hypothesis that p53 mutation alone is not sufficient to drive progression of thyroid cancer to the aggressive anaplastic form.  (+info)

Mechanisms of methotrexate resistance in osteosarcoma. (52/19725)

High-dose methotrexate is a major component of current protocols for the treatment of osteosarcoma, but some tumors seem to be resistant. Potential mechanisms of resistance include decreased transport through the reduced folate carrier (RFC) and increased expression of dihydrofolate reductase (DHFR). To investigate methotrexate resistance, tumors were obtained from 42 patients with high-grade osteosarcoma. RFC and DHFR mRNA expression were studied by semiquantitative reverse transcription-PCR. The RFC and DHFR genes were studied for deletions and amplification by Southern blot. Thirteen of 20 (65%) osteosarcoma samples were found to have decreased RFC expression at the time of initial biopsy. At definitive surgery and relapse, 10 of 22 (45%) were found to have decreased RFC expression. Seventeen of 26 (65%) samples with a poor response to chemotherapy had decreased RFC expression, whereas 5 of 14 (36%) samples with a good response had a decrease (P = 0.03). None of the samples had an RFC gene deletion. Two of 20 samples (10%) showed increased DHFR expression at initial biopsy. The frequency of increased DHFR expression was significantly higher in metastatic or recurrent tumors (62%, P = 0.014). None of the samples showed evidence of DHFR gene amplification. The high frequency of decreased RFC expression in the biopsy material suggests that impaired transport of methotrexate is a common mechanism of intrinsic resistance in osteosarcoma. Increased DHFR expression in the pulmonary metastases may be a mechanism of acquired methotrexate resistance or a difference between primary and metastatic lesions.  (+info)

The negative regulation of the rat aldehyde dehydrogenase 3 gene by glucocorticoids: involvement of a single imperfect palindromic glucocorticoid responsive element. (53/19725)

Glucocorticoids repressed the polycyclic aromatic hydrocarbon-dependent induction of Class 3 aldehyde dehydrogenase (ALDH3) enzyme activity and mRNA levels in isolated rat hepatocytes by more than 50 to 80%, with a concentration-dependence consistent with the involvement of the glucocorticoid receptor (GR). No consistent effect on the low basal transcription rate was observed. This effect of glucocorticoids (GC) on polycyclic aromatic hydrocarbon induction was effectively antagonized at the mRNA and protein level by the GR antagonist RU38486. The response was cycloheximide-sensitive, because the protein synthesis inhibitor caused a GC-dependent superinduction of ALDH3 mRNA levels. This suggests that the effects of GC on this gene are complex and both positive and negative gene regulation is possible. The GC-response was recapitulated in HepG2 cells using transient transfection experiments with CAT reporter constructs containing 3.5 kb of 5'-flanking region from ALDH3. This ligand-dependent response was also observed when a chimeric GR (GR DNA-binding domain and peroxisome proliferator-activated receptor ligand-binding domain) was used in place of GR in the presence of the peroxisome proliferator, nafenopin. A putative palindromic glucocorticoid-responsive element exists between -930 and -910 base pairs relative to the transcription start site. If this element was either deleted or mutated, the negative GC-response was completely lost, which suggests that this sequence is responsible, in part, for the negative regulation of the gene. Electrophoretic mobility shift analysis demonstrated that this palindromic glucocorticoid-responsive element is capable of forming a specific DNA-protein complex with human glucocorticoid receptor. In conclusion, the negative regulation of ALDH3 in rat liver is probably mediated through direct GR binding to its canonical responsive element.  (+info)

A new Ac-like transposon of Arabidopsis is associated with a deletion of the RPS5 disease resistance gene. (54/19725)

The RPS5 and RFL1 disease resistance genes of Arabidopsis ecotype Col-0 are oriented in tandem and are separated by 1.4 kb. The Ler-0 ecotype contains RFL1, but lacks RPS5. Sequence analysis of the RPS5 deletion region in Ler-0 revealed the presence of an Ac-like transposable element, which we have designated Tag2. Southern hybridization analysis of six Arabidopsis ecotypes revealed 4-11 Tag2-homologous sequences in each, indicating that this element is ubiquitous in Arabidopsis and has been active in recent evolutionary time. The Tag2 insertion adjacent to RFL1 was unique to the Ler-0 ecotype, however, and was not present in two other ecotypes that lack RPS5. DNA sequence from the latter ecotypes lacked a transposon footprint, suggesting that insertion of Tag2 occurred after the initial deletion of RPS5. The deletion breakpoint contained a 192-bp insertion that displayed hallmarks of a nonhomologous DNA end-joining event. We conclude that loss of RPS5 was caused by a double-strand break and subsequent repair, and cannot be attributed to unequal crossing over between resistance gene homologs.  (+info)

Identification and characterisation of the Drosophila melanogaster O6-alkylguanine-DNA alkyltransferase cDNA. (55/19725)

The protein O 6-alkylguanine-DNA alkyltransferase(alkyltransferase) is involved in the repair of O 6-alkylguanine and O 4-alkylthymine in DNA and plays an important role in most organisms in attenuating the cytotoxic and mutagenic effects of certain classes of alkylating agents. A genomic clone encompassing the Drosophila melanogaster alkyltransferase gene ( DmAGT ) was identified on the basis of sequence homology with corresponding genes in Saccharomyces cerevisiae and man. The DmAGT gene is located at position 84A on the third chromosome. The nucleotide sequence of DmAGT cDNA revealed an open reading frame encoding 194 amino acids. The MNNG-hypersensitive phenotype of alkyltransferase-deficient bacteria was rescued by expression of the DmAGT cDNA. Furthermore, alkyltransferase activity was identified in crude extracts of Escherichia coli harbouring DmAGT cDNA and this activity was inhibited by preincubation of the extract with an oligonucleotide containing a single O6-methylguanine lesion. Similar to E.coli Ogt and yeast alkyltransferase but in contrast to the human alkyltransferase, the Drosophila alkyltransferase is resistant to inactivation by O 6-benzylguanine. In an E.coli lac Z reversion assay, expression of DmAGT efficiently suppressed MNNG-induced G:C-->A:T as well as A:T-->G:C transition mutations in vivo. These results demonstrate the presence of an alkyltransferase specific for the repair of O 6-methylguanine and O 4-methylthymine in Drosophila.  (+info)

Sequences of the genes for the TEM-20, TEM-21, TEM-22, and TEM-29 extended-spectrum beta-lactamases. (56/19725)

The sequences of the blaTEM genes encoding TEM-20, TEM-21, TEM-22, and TEM-29 extended-spectrum beta-lactamases were determined. Analysis of the deduced amino acid sequences indicated that TEM-20 and TEM-29 were derived from TEM-1 and that TEM-21 and TEM-22 were derived from TEM-2. The substitutions involved were Ser-238 and Thr-182 for TEM-20; His-164 for TEM-29; Lys-104, Arg-153, and Ser-238 for TEM-21; and Lys-104, Gly-237, and Ser-238 for TEM-22. The promoter region of the blaTEM-22 gene was identical to that of blaTEM-3. High-level production of TEM-20 could result from a 135-bp deletion which combined the -35 region of the Pa promoter with the -10 region of the P3 promoter and a G-->T transition in the latter motif.  (+info)