Rat testis motor proteins associated with spermatid translocation (dynein) and spermatid flagella (kinesin-II). (1/658)

In this study, we report sites in the seminiferous epithelium of the rat testis that are immunoreactive with antibodies to the intermediate chain of cytoplasmic dynein and kinesin II. The study was done to determine whether or not microtubule-dependent motor proteins are present in Sertoli cell regions involved with spermatid translocation. Sections and epithelial fragments of perfusion-fixed rat testis were probed with an antibody (clone 74.1) to the intermediate chain of cytoplasmic dynein (IC74) and to kinesin-II. Labeling with the antibody to cytoplasmic dynein was dramatically evident in Sertoli cell regions surrounding apical crypts containing attached spermatids and known to contain unique intercellular attachment plaques. The antibody to kinesin II reacted only with spermatid tails. The levels of cytoplasmic dynein visible on immunoblots of supernatants collected from spermatid/junction complexes treated with an actin-severing enzyme (gelsolin) were greater than those of controls, indicating that at least some of the dynein may have been associated with Sertoli cell junction plaques attached to spermatids. Results are consistent with the conclusion that an isoform of cytoplasmic dynein may be responsible for the apical translocation of elongate spermatids that occurs before sperm release. Also, this is the first report of kinesin-II in mammalian spermatid tails.  (+info)

Sodium salicylate activates caspases and induces apoptosis of myeloid leukemia cell lines. (2/658)

Nonsteroidal antiinflammatory agents (NSAIA) have been shown to exert potent chemopreventive activity against colon, lung, and breast cancers. In this study, we show that at pharmacological concentrations (1 to 3 mmol/L) sodium salicylate (Na-Sal) can potently induce programmed cell death in several human myeloid leukemia cell lines, including TF-1, U937, CMK-1, HL-60, and Mo7e. TF-1 cells undergo rapid apoptosis on treatment with Na-Sal, as indicated by increased annexin V binding capacity, cpp-32 (caspase-3) activation, and cleavage of poly (ADP-ribose) polymerase (PARP) and gelsolin. In addition, the expression of MCL-1, an antiapoptotic member of the BCL-2 family, is downregulated during Na-Sal-induced cell death, whereas the expression of BCL-2, BAX, and BCL-XL is unchanged. Z-VAD, a potent caspase inhibitor, prevents the cleavage of PARP and gelsolin and rescues cells from Na-Sal-induced apoptosis. In addition, we show that Na-Sal accelerates growth factor withdrawal-induced apoptosis and synergizes with daunorubicin to induce apoptosis in TF-1 cells. Thus, our data provide a potential mechanism for the chemopreventive activity of NSAIA and suggest that salicylates may have therapeutic potential for the treatment of human leukemia.  (+info)

A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. (3/658)

Synthetic benzamide derivatives were investigated for their ability to inhibit histone deacetylase (HDA). In this study, one of the most active benzamide derivatives, MS-27-275, was examined with regard to its biological properties and antitumor efficacy. MS-27-275 inhibited partially purified human HDA and caused hyperacetylation of nuclear histones in various tumor cell lines. It behaved in a manner similar to other HDA inhibitors, such as sodium butyrate and trichostatin A; MS-27-275 induced p21(WAF1/CIP1) and gelsolin and changed the cell cycle distribution, decrease of S-phase cells, and increase of G1-phase cells. The in vitro sensitivity spectrum of MS-27-275 against various human tumor cell lines showed a pattern different than that of a commonly used antitumor agent, 5-fluorouracil, and, of interest, the accumulation of p21(WAF1/CIP1) tended to be faster and greater in the cell lines sensitive to MS-27-275. MS-27-275 administered orally strongly inhibited the growth in seven of eight tumor lines implanted into nude mice, although most of these did not respond to 5-fluorouracil. A structurally analogous compound to MS-27-275 without HDA-inhibiting activity showed neither the biological effects in cell culture nor the in vivo therapeutic efficacy. These results suggest that MS-27-275 acts as an antitumor agent through HDA inhibition and may provide a novel chemotherapeutic strategy for cancers insensitive to traditional antitumor agents.  (+info)

Calcium-dependent actin filament-severing protein scinderin levels and localization in bovine testis, epididymis, and spermatozoa. (4/658)

We assessed the levels and localization of the actin filament-severing protein scinderin, in fetal and adult bovine testes, and in spermatozoa during and following the epididymal transit. We performed immunoblots on seminiferous tubules and interstitial cells isolated by enzymatic digestion, and on bovine chromaffin cells, spermatozoa, aorta, and vena cava. Immunoperoxidase labeling was done on Bouin's perfusion-fixed testes and epididymis tissue sections, and on spermatozoa. In addition, immunofluorescence labeling was done on spermatozoa. Immunoblots showed one 80-kDa band in chromaffin cells, fetal and adult tubules, interstitial cells, spermatozoa, aorta, and vena cava. Scinderin levels were higher in fetal than in adult seminiferous tubules but showed no difference between fetal and adult interstitial cells. Scinderin levels were higher in epididymal than in ejaculated spermatozoa. Scinderin was detected in a region corresponding with the subacrosomal space in the round spermatids and with the acrosome in the elongated spermatids. In epididymal spermatozoa, scinderin was localized to the anterior acrosome and the equatorial segment, but in ejaculated spermatozoa, the protein appeared in the acrosome and the post-equatorial segment of the head. In Sertoli cells, scinderin was detected near the cell surface and within the cytoplasm, where it accumulated near the base in a stage-specific manner. In the epididymis, scinderin was localized next to the surface of the cells; in the tail, it collected near the base of the principal cells. In Sertoli cells and epididymal cells, scinderin may contribute to the regulation of tight junctional permeability and to the release of the elongated spermatids by controlling the state of perijunctional actin. In germ cells, scinderin may assist in the shaping of the developing acrosome and influence the fertility of the spermatozoa.  (+info)

Identification of Tyr438 as the major in vitro c-Src phosphorylation site in human gelsolin: a mass spectrometric approach. (5/658)

Gelsolin is an actin-binding protein (82 kDa) consisting of six repeated segments (S1-S6), each approximately 120 residues long. It interacts with phospholipids and we previously showed that phosphatidylinositol 4,5-bisphosphate promotes phosphorylation of gelsolin by the tyrosine kinase c-Src. We used a combination of different methods, such as thin-layer chromatography and anti-phosphotyrosine-agarose immunoprecipitation of phosphopeptides combined with matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) and post source decay (PSD) analysis, to identify the phosphorylation sites in gelsolin. The major phosphorylation site (Tyr438) was located in subdomain 4 (S4). Phosphorylation of gelsolin in the gelsolin-actin2 complex was inhibited by 90%. Gelsolin phosphorylation by c-Src in the presence of lysophosphatidic acid also revealed Tyr438 as the most prominent site. Additional minor sites were found using the anti-phosphotyrosine bead immunoprecipitation method followed by MALDI-MS and PSD analysis. These sites, representing approximately 5% of the total phosphate incorporation, were identified as Tyr59, Tyr382, Tyr576, and Tyr624. Based on these results we generated antibodies which specifically recognize Tyr438 phosphorylated gelsolin.  (+info)

Oxamflatin is a novel antitumor compound that inhibits mammalian histone deacetylase. (6/658)

Oxamflatin [(2E)-5-[3-[(phenylsufonyl) aminol phenyl]-pent-2-en-4-ynohydroxamic acid] induces transcriptional activation of junD and morphological reversion in various NIH3T3-derived transformed cell lines. We found that oxamflatin showed in vitro antiproliferative activity against various mouse and human tumor cell lines with drastic changes in the cell morphology and in vivo antitumor activity against B16 melanoma. Oxamflatin caused an elongated cell shape with filamentous protrusions as well as arrest of the cell cycle at the G1 phase in HeLa cells. These phenotypic changes of HeLa cells were apparently similar to those by trichostatin A (TSA), a specific inhibitor of histone deacetylase (HDAC). The effect of oxamflatin on the transcriptional activity of the cytomegalovirus (CMV) promoter was examined and compared with known HDAC inhibitors, TSA, sodium n-butyrate, and FR901228. Oxamflatin as well as all these inhibitors greatly enhanced the transcriptional activity of the CMV promoter in a dose-dependent manner. Oxamflatin, like TSA, inhibited intracellular HDAC activity, as a result of which marked amounts of acetylated histone species accumulated. Finally, effects on expression of several endogenous genes involved in cell morphology and cell cycle control in HeLa cells were analysed. Expression of gelsolin, cyclin E and Cdk inhibitors including p21WAF1/Cip1 was highly augmented, while that of cyclin A and cyclin D1 was decreased by oxamflatin. These results suggest that changes in the expression pattern of the genes regulating cell morphology and the cell cycle due to histone hyperacetylation are responsible for the antitumor activity, the morphological change and the cell cycle arrest induced by oxamflatin.  (+info)

The amyloidogenicity of gelsolin is controlled by proteolysis and pH. (7/658)

BACKGROUND: Normally, gelsolin functions in plasma as part of the actin-scavenging system to assemble and disassemble actin filaments. The Asp 187-->Asn (D187N) Asp 187-->Tyr (D187Y) gelsolin mutations facilitate two proteolytic cuts in the parent protein generating a 71-residue fragment that forms amyloid fibrils in humans, putatively causing Finnish type familial amyloidosis (FAF). We investigated the role of the D187N mutation in amyloidogenicity using biophysical studies in vitro. RESULTS: Both the recombinant wild-type and D187N FAF-associated gelsolin fragments adopt an ensemble of largely unfolded structures that do not self-associate into amyloid at pH 7. 5. Incubation of either fragment at low pHs (6.0-4.0) leads to the formation of well-defined fibrils within 72 hours, however. CONCLUSIONS: The D187N mutation has been suggested to destabilize the structure of the gelsolin parent protein (specifically domain 2), facilitating two proteolytic cleavage events. Our studies demonstrate that generating the largely unstructured peptide is not sufficient alone for amyloid formation in vitro (on a time scale of months). A drop in pH or an analogous environmental change appears necessary to convert the unstructured fragment into amyloid fibrils, probably through an associative mechanism. The wild-type gelsolin fragment will make amyloid fibrils from pH 6 to 4 in vitro, but neither the wild-type fragment nor fibrils have been observed in vivo. It is possible that domain 2 of wild-type gelsolin is stable in the context of the whole protein and not susceptible to the proteolytic degradation that affords the 71-residue FAF-associated peptide.  (+info)

Co-operative binding of Ca2+ ions to the regulatory binding sites of gelsolin. (8/658)

The rate of association of actin with gelsolin was measured at various Ca2+ and ATP concentrations. The fraction of Ca2+-activated gelsolin was determined by quantitative evaluation of the association rates thereby assuming that Ca2+-binding gelsolin associates with actin and Ca2+-free gelsolin does not. A plot of the fraction of Ca2+-activated gelsolin vs. the free Ca2+ concentration revealed a sigmoidal shape suggesting that co-operative binding of Ca2+ ions is required for activation of gelsolin. A good fit of the experimental data by calculated binding curves was obtained if two Ca2+ ions were assumed to bind to actin in a highly co-operative manner. ATP decreased the rate of association of gelsolin with actin and bound to gelsolin at a low affinity (Kd = 32 microm for Ca2+-free and Kd = 400 microm for Ca2+-activated gelsolin). In contrast, a 1 : 1 gelsolin-actin complex was found to be activated for association with actin by a single Ca2+ ion in a non-co-operative manner.  (+info)