Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. (73/1980)

We have applied two strategies for the cloning of four genes responsible for the biosynthesis of the GT1a ganglioside mimic in the lipooligosaccharide (LOS) of a bacterial pathogen, Campylobacter jejuni OH4384, which has been associated with Guillain-Barre syndrome. We first cloned a gene encoding an alpha-2, 3-sialyltransferase (cst-I) using an activity screening strategy. We then used nucleotide sequence information from the recently completed sequence from C. jejuni NCTC 11168 to amplify a region involved in LOS biosynthesis from C. jejuni OH4384. The LOS biosynthesis locus from C. jejuni OH4384 is 11.47 kilobase pairs and encodes 13 partial or complete open reading frames, while the corresponding locus in C. jejuni NCTC 11168 spans 13.49 kilobase pairs and contains 15 open reading frames, indicating a different organization between these two strains. Potential glycosyltransferase genes were cloned individually, expressed in Escherichia coli, and assayed using synthetic fluorescent oligosaccharides as acceptors. We identified genes encoding a beta-1, 4-N-acetylgalactosaminyl-transferase (cgtA), a beta-1, 3-galactosyltransferase (cgtB), and a bifunctional sialyltransferase (cst-II), which transfers sialic acid to O-3 of galactose and to O-8 of a sialic acid that is linked alpha-2,3- to a galactose. The linkage specificity of each identified glycosyltransferase was confirmed by NMR analysis at 600 MHz on nanomole amounts of model compounds synthesized in vitro. Using a gradient inverse broadband nano-NMR probe, sequence information could be obtained by detection of (3)J(C,H) correlations across the glycosidic bond. The role of cgtA and cst-II in the synthesis of the GT1a mimic in C. jejuni OH4384 were confirmed by comparing their sequence and activity with corresponding homologues in two related C. jejuni strains that express shorter ganglioside mimics in their LOS.  (+info)

CD11b/CD18-coated microspheres attach to E-selectin under flow. (74/1980)

Neutrophils can attach to E-selectin under flow. Proposed ligands for E-selectin carry SLe(x)-type glycans. The leukocyte beta2 integrins are glycosylated with SLe(x). Thus, we speculated that beta2 integrins could support attachment to E-selectin. To test this hypothesis, we coated 10-microm-diameter microspheres with purified CD11b/CD18 (alphaMbeta2) and investigated the adhesion of the resulting alphaMbeta2 microspheres to E-selectin. Under in vitro flow conditions, the alphaMbeta2 microspheres attached to Chinese hamster ovary cells expressing E-selectin (CHO-E) and 4-h interleukin-1beta-activated human umbilical vein endothelial cells (HUVEC). At a shear stress of 1.8 dynes/cm2, the attachment events were eliminated by pretreatment of the cellular monolayers with a mAb to E-selectin. alphaMbeta2 microspheres did not attach to untransfected CHO cells or unactivated HUVEC at 1.8 dynes/cm2. Taken together, the results strongly suggest that the CD11b/CD18-E-selectin bond has sufficient biophysical properties to mediate attachment of neutrophil-sized particles to E-selectin under flow.  (+info)

Abnormalities in the glycosphingolipid content of human Pk and p erythrocytes. (75/1980)

Erythrocytes of the rare Pk phenotype lack the blood group P antigen, and p erythrocytes lack both P and Pk antigens. On the basis of immunological data we suggested previously that the P and Pk antigens are the glycosphingolipids globoside and trihexosyl ceramide, respectively, and we have now confirmed these designations by chemical analysis of erythrocytes lacking these antigens. The Pk erythrocytes contain only traces of globoside and have a marked excess of trihexosyl ceramide in comparison with normal erythrocytes. The p erythrocytes lack globoside and trihexosyl ceramide and contain an excess of lactosyl ceramide and other complex glycolipids. Our analyses of normal erythrocytes also revealed complex gangliosides with the approximate chromatographic mobilities of GD1b and GT1, and several gangliosides containing N-acetylglucosamine.  (+info)

GD3 synthase gene expression in PC12 cells results in the continuous activation of TrkA and ERK1/2 and enhanced proliferation. (76/1980)

A rat pheochromocytoma cell line (PC12) transfected with ganglioside GD3 synthase gene showed a marked change in the ganglioside profile and enhanced proliferation and no response of neurite extension to nerve growth factor (NGF) stimulation. In these transfectant cells, a continuous phosphorylation of TrkA and the activation of ERK1/2 without NGF treatment were observed. Proliferation inhibition experiments with kinase inhibitors such as herbimycin A, K-252a, and PD98059 revealed that the enhanced proliferation was actually due to the activation of the Ras/MEK/ERK pathway. A TrkA dimer was detected in the GD3 synthase transfectant cells regardless of NGF treatment by cross-linking and immunoblotting. The increased expression of GD1b and GT1b in these transfectant cells might induce the conformational change of TrkA to form a dimer and to be activated continuously. These results may indicate regulatory roles of gangliosides in cell proliferation under physiological and malignant processes.  (+info)

Choleragen-mediated release of trapped glucose from liposomes containing ganglioside GM1. (77/1980)

125I-Labeled choleragen was bound to liposomes containing galactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GM1), but not in large amounts to ganglioside-free liposomes nor to those containing N-acetylneuraminylgalactosylglucosylceramide (GM3), N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactosylglucosylceramide (GM2), or N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactos ylglucosylceramide (GD1a). Choleragen released trapped glucose only from GM1-liposomes. This choleragen-induced glucose release from GM1-liposomes was relatively rapid for the first few minutes, then continued more slowly. The amount of glucose released from liposomes in 30 min was dependent on both the GM1 content and choleragen concentration. Prior incubation of GM1-liposomes with anti-GM1 antiserum prevented the choleragen-dependent release of trapped glucose. After incubation of GM1-liposomes with choleragen, addition of anticholeragen antibodies and complement led to more extensive glucose release. Under these latter conditions a much smaller glucose release was observed also from liposomes containing GM1 or N-acetylneuraminylgalactosyl-N-acetylgalactosaminyl-(N-acetylneuraminyl)-galactos ylglucosylceramide in the absence of choleragen. These releases were attributed to naturally-occurring antiganglioside antibodies in the antiserum and complement. Ganglioside-free liposomes did not release glucose in response to anticholeragen and complement. It appears that choleragen in the absence of other proteins binds specifically to liposomes containing GM1 and can induce permeability changes.  (+info)

Tissue-specific expression of c-series gangliosides in the extraneural system. (78/1980)

c-Series gangliosides in extraneural tissues from young and adult rats were examined using thin-layer chromatographic (TLC) immunostaining with a specific monoclonal antibody A2B5. The composition of c-series gangliosides significantly differed among tissues. In adult rats, while liver tissue contained GT1c, GQ1c, and GP1c, renal tissue had GT3 as the major c-series ganglioside with GT2 in a lesser amount. Pancreatic tissue expressed c-series gangliosides that consisted of GT3, GT2, GQ1c, and GP1c. In other tissues including adrenal, thyroid, and eye lens, GT3 constituted the main c-series ganglioside species. While total ganglioside contents of extraneural tissues were much lower than that of brain tissue, the proportions of c-series gangliosides to total gangliosides were higher in many extraneural tissues. Interestingly, eye lens had the highest GT3 content among rat tissues examined. The compositions and concentrations of c-series gangliosides in liver and kidney significantly differed between 5-day-old and 7-week-old rats, suggesting the development-dependent expression of c-series gangliosides in these tissues. These results suggest that the expression of c-series gangliosides in extraneural tissues is regulated in a tissue-specific manner.  (+info)

Molecular cloning and expression of mouse GD1alpha/GT1aalpha/GQ1balpha synthase (ST6GalNAc VI) gene. (79/1980)

A novel member of the mouse CMP-NeuAc:beta-N-acetylgalactosaminide alpha2,6-sialyltransferase (ST6GalNAc) subfamily, designated ST6GalNAc VI, was identified by BLAST analysis of expressed sequence tags. The sequence of the cDNA clone of ST6GalNAc VI encoded a type II membrane protein with 43 amino acids composing the cytoplasmic domain, 21 amino acids composing the transmembrane region, and 269 amino acids composing the catalytic domain. The predicted amino acid sequence showed homology to the previously cloned ST6GalNAc III, IV, and V, with common amino acid sequences in sialyl motif L and S among these four enzymes. A fusion protein with protein A and extracts from L cells transfected with ST6GalNAc VI in an expression vector showed enzyme activity of alpha2,6-sialyltransferase for GM1b, GT1b, and GD1a but not toward glycoproteins. Thin layer chromatography-immunostaining revealed that the products were GD1alpha, GQ1balpha, and GT1aalpha. Northern blotting revealed that this gene was expressed in a wide range of mouse tissues such as colon, liver, heart, spleen, and brain. It is concluded that this enzyme is a novel sialyltransferase involved in the synthesis of alpha-series gangliosides in the nervous tissues and many other tissues.  (+info)

The structures of the H(C) fragment of tetanus toxin with carbohydrate subunit complexes provide insight into ganglioside binding. (80/1980)

The entry of tetanus neurotoxin into neuronal cells proceeds through the initial binding of the toxin to gangliosides on the cell surface. The carboxyl-terminal fragment of the heavy chain of tetanus neurotoxin contains the ganglioside-binding site, which has not yet been fully characterized. The crystal structures of native H(C) and of H(C) soaked with carbohydrates reveal a number of binding sites and provide insight into the possible mode of ganglioside binding.  (+info)