Identification and characterization of genes associated with human hepatocellular carcinogenesis. (1/42)

Eight cDNAs encoding galectin 4 (Gal-4), UGT2B4 (UDP-glucuronosyltransferase), ribosomal phosphoprotein P0 (rpP0), dek, insulin-like growth factor binding protein (IGFBP) 1, vitronectin, retinoic acid-induced gene E (RIG-E), and CYP3A4 (cytochrome P450 nifedipine oxidase) were identified as differentially expressed genes between human hepatocellular carcinoma (HCC) and matched nontumorous liver tissues. Higher levels of UGT2B4, rpP0, dek, vitronectin, Gal-4, and IGFBP-1 mRNAs combined with a lower level of RIG-E mRNA were observed in at least four of five primary HCCs compared to matched nontumorous liver tissues. Furthermore, a pathological study suggested that the levels of UGT2B4, rpP0, dek, and vitronectin increased and the level of RIG-E decreased with the histological grading. On the other hand, the expression of CYP3A4 mRNA and CYP3A7 (P-450 Fla) mRNA, a transcript found in the fetus and highly homologous to CYP3A4, was higher in all nontumorous liver and some of the carcinoma tissues from five HCC patients, whereas it was significantly lower in normal liver tissues from two non-HCC patients. The examination using HCC cell lines HuH-7 and HepG2 under different growth conditions suggested that the expression of dek mRNA was growth-associated. In contrast, the expression of Gal-4, UGT2B4, IGFBP-1, and RIG-E mRNAs was regulated in a cell density-dependent manner: the levels of Gal-4, UGT2B4, and IGFBP-1 were undetectably low, whereas the level of RIG-E was high in rapidly proliferating, subconfluent HCC cells in 10% serum; however, the expression levels were reversed in dense, overcrowded cultures. In addition, IGFBP-1 and Gal-4 mRNAs were also induced by reducing the serum concentration to 0.1%. We also demonstrated that sodium butyrate, an inducer of differentiation, up-regulated and down-regulated RIG-E and dek mRNAs, respectively, in a dose-dependent manner in HuH-7 cells, supporting, in part, our pathological observation. In summary, therefore, high expression of Gal-4, UGT2B4, rpP0, dek, IGFBP-1, and vitronectin, together with low expression of RIG-E, was correlated with the malignant potential of HCC. CYP3A4 and CYP3A7 could be induced in HCC-bearing livers. These transcripts are differentially regulated depending on cell-cell contact, serum growth factors, growth and differentiation status, and/or other mechanisms in premalignant and malignant liver cells.  (+info)

Lipid rafts exist as stable cholesterol-independent microdomains in the brush border membrane of enterocytes. (2/42)

Glycosphingolipid/cholesterol-rich membranes ("rafts")can be isolated from many types of cells, but their existence as stable microdomains in the cell membrane has been elusive. Addressing this problem, we studied the distribution of galectin-4, a raft marker, and lactase, a protein excluded from rafts, on microvillar vesicles from the enterocyte brush border membrane. Magnetic beads coated with either anti-galectin-4 or anti-lactase antibodies were used for immunoisolation of vesicles followed by double immunogold labeling of the two proteins. A morphometric analysis revealed subpopulations of raft-rich and raft-poor vesicles by the following criteria: 1) the lactase/galectin-4 labeling ratio/vesicle captured by the anti-lactase beads was significantly higher (p < or = 0.01) than that of vesicles captured by anti-galectin-4 beads, 2) subpopulations of vesicles labeled by only one of the two antibodies were preferentially captured by beads coated with the respective antibody (p < or = 0.01), 3) the average diameter of "galectin-4 positive only" vesicles was smaller than that of vesicles labeled for lactase. Surprisingly, pretreatment with methyl-beta-cyclodextrin, which removed >70% of microvillar cholesterol, did not affect the microdomain localization of galectin-4. We conclude that stable, cholesterol-independent raft microdomains exist in the enterocyte brush border.  (+info)

Toxoplasma gondii micronemal protein MIC1 is a lactose-binding lectin. (3/42)

Host cell invasion by Toxoplasma gondii is a multistep process with one of the first steps being the apical release of micronemal proteins that interact with host receptors. We demonstrate here that micronemal protein 1 (MIC1) is a lactose-binding lectin. MIC1 and MIC4 were recovered in the lactose-eluted (Lac(+)) fraction on affinity chromatography on immobilized lactose of the soluble antigen fraction from tachyzoites of the virulent RH strain. MIC1 and MIC4 were both identified by N-terminal microsequencing. MIC4 was also identified by sequencing cDNA clones isolated from an expression library following screening with mouse polyclonal anti-60/70 kDa (Lac(+) proteins) serum. This antiserum localized the Lac(+) proteins on the apical region of T. gondii tachyzoites by confocal microscopy. The Lac(+) fraction induced hemagglutination (mainly type A human erythrocytes), which was inhibited by beta-galactosides (3 mM lactose and 12 mM galactose) but not by up to 100 mM melibiose (alpha-galactoside), fucose, mannose, or glucose or 0.2 mg/ml heparin. The lectin activity of the Lac(+) preparation was attributed to MIC1, because blotted MIC1, but not native MIC4, bound human erythrocyte type A and fetuin. The copurification of MIC1 and MIC4 may have been due to their association, as reported by others. These data suggest that MIC1 may act through its lectin activity during T. gondii infection.  (+info)

High-affinity binding of recombinant human galectin-4 to SO(3)(-)-->3Galbeta1-->3GalNAc pyranoside. (4/42)

Galectin-4 is a member of galectin family and has two carbohydrate recognition domains. Although galectin-4 has been thought to function in cell adhesion, its precise carbohydrate binding specificity has not yet been clarified. We studied the carbohydrate binding specificity of galectin-4 comparatively with that of galectin-3, using surface plasmon resonance, galectin-3- or -4-Sepharose column chromatography and the inhibition assay of their binding to immobilized asialofetuin. Galectin-3 broadly recognized lactose, type 1, type 2, and core 1. The substitution at the C-2 and C-3 position of beta-galactose in these oligosaccharides with alpha-fucose, alpha-GalNAc, alpha-Neu5Ac, or sulfate increased the binding ability for galectin-3, whereas the substitution at the C-4 or C-6 position diminished the affinity. In contrast, galectin-4 had quite weak affinity to lactose, type 1, and type 2 (K(d) congruent with 8 x 10(-4) M). Galectin-4 showed weak binding ability to core 1 and C-2' or -3'-substituted lactose, type 1, and type 2 with alpha-fucose, alpha-GalNAc, or sulfate (K(d) : 5 x 10(-5) approximately 3 x 10(-4) M). Interestingly, the K(d) value, 3.4 x 10(-6) M, of SO(3)(-)-->3Galbeta1-->3GalNAc-O-Bn to galectin-4 at 25 degrees C was two orders of magnitude lower than that of core 1-O-Bn. 3'-Sialylated core 1 had very weak affinity to galectin-4, suggesting that 3'-O-sulfation of core 1 is critical for the recognition. These results suggest that galectin-4 has a unique carbohydrate binding specificity and interacts with O-linked sulfoglycans.  (+info)

Fine specificity of domain-I of recombinant tandem-repeat-type galectin-4 from rat gastrointestinal tract (G4-N). (5/42)

Galectins, a family of beta-galactoside-specific endogenous lectins, are involved in regulating diverse activities such as proliferation/apoptosis, cell-cell (matrix) interaction and cell migration. It is presently unclear to what extent the carbohydrate fine specificities of the combining sites of mammalian galectins overlap. To address this issue, we performed an analysis of the carbohydrate-recognition domain (CRD-I) near the N-terminus of recombinant rat galectin-4 (G4-N) by the biotin/avidin-mediated microtitre plate lectin-binding assay with natural glycoproteins (gps)/polysaccharide and by the inhibition of galectin-glycan interactions with a panel of glycosubstances. Among the 35 glycans tested for lectin binding, G4-N reacted best with human blood group ABH precursor gps, and asialo porcine salivary gps, which contain high densities of the blood group Ii determinants Galbeta1-3GalNAc (the mucin-type sugar sequence on the human erythrocyte membrane) and/or GalNAcalpha1-Ser/Thr ( Tn ), whereas this lectin domain reacted weakly or not at all with most sialylated gps. Among the oligosaccharides tested by the inhibition assay, Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc was the best. It was 666.7 and 33.3 times more potent than Gal and Galbeta1-3GlcNAc, respectively. G4-N has a preference for the beta-anomer of Gal at the non-reducing ends of oligosaccharides with a Galbeta1-3 linkage, over Galbeta1-4 and Galbeta1-6. The fraction of Tn glycopeptide from asialo ovine submandibular glycoprotein was 8.3 times more active than Galbeta1-3GlcNAc. The overall carbohydrate specificity of G4-N can be defined as Galbeta1-3GlcNAcbeta1-3Galbeta1-4Glc (lacto- N -tetraose)>Galbeta1-4GlcNAcbeta1-3Galbeta1-4Glc (lacto- N -neo-tetraose) and Tn clusters>Galbeta1-4Glc and GalNAcbeta1-3Gal>Galbeta1-3GalNAc>Galbeta1-3GlcNAc>Galbeta1-4GlcNAc>GalNAc>Gal. The definition of this binding profile provides the basis to detect differential binding properties relative to the other galectins with ensuing implications for functional analysis.  (+info)

Galectinomics: finding themes in complexity. (6/42)

With the rapid explosion of genomic sequence databases, there has been an equivalent boom in genomics, the use of sequence information to define and compare gene families and their organization across diverse species. Such expansion of the galectin family by "galectinomics" to include many new members is reviewed here. The galectin gene family is evolutionarily ancient with representatives in vertebrates, invertebrates, and even in protists. Although the identification of many novel galectin relatives in widely divergent organisms (including Arabidopsis, Drosophila, Caenorhabditis, Danio, Xenopus, and human) has added significantly to the size and complexity of this intriguing protein family, several common themes arise, which suggest promising new research targets.  (+info)

Patterns of expression of a 15K beta-D-galactoside-specific lectin during early development of the avian embryo. (7/42)

We have determined, by immunohistochemical and biochemical techniques, the distribution of an endogenous beta-D-galactoside-binding lectin between the early primitive streak stage and the 5th day of embryonic development of the chick. The lectin, which was purified from the pectoral muscle of 16-day-old chick embryos, migrates on SDS-PAGE as a single polypeptide of relative molecular mass 15 x 10(3). Antibodies to this pure lectin interact with the 15K (K = 10(3) M(r)) polypeptide as well as with a 6.5K polypeptide; this second component appears to be antigenically related to the 15K lectin, as antibodies affinity purified on the 15K band recognize both polypeptides. In early stages of development, lectin immunoreactivity was present in most cells of the epiblast and hypoblast in the region of the primitive streak, while towards the edge of the area pellucida the epiblast was stained less intensely. During gastrulation, strong immunoreactivity was present also in migrating cells and in the mesoblast, while at the margin of the area pellucida the epiblast was negative. Up to the 10-somite stage, lectin immunoreactivity was present in the somites, neural tube and presumptive cardiac region; the non-neural ectoderm and the extracellular matrix were not labeled; the predominant immunoreactive component at this stage of development was the 6.5K polypeptide. Later in development, the lectin immunoreactivity gradually disappeared from the dermamyotome and nervous system to reappear conspicuously as soon as a differentiated myotome could be detected. Immunoreactivity was very high in the myotome, skeletal and cardiac muscles and transient in smooth muscles. The only region of the nervous system that continued to express the lectin throughout development was the trigeminal (semilunar) ganglion; in all regions of the nervous system, the lectin immunoreactivity disappeared early in development to be re-expressed only much later. The lining epithelium of the digestive tract and other endodermal derivatives expressed the lectin transiently. In the extraembryonic membranes, immunoreactivity to the lectin was observed in the yolk sac and in both layers of the amnion. The striking regulation of the expression of this endogenous lectin suggests that its functions are linked to cell proliferation and/or to the selective expression of a developmentally-timed cell phenotype.  (+info)

Microvillar membrane microdomains exist at physiological temperature. Role of galectin-4 as lipid raft stabilizer revealed by "superrafts". (8/42)

Lipid rafts (glycosphingolipid/cholesterol-enriched membrane microdomains) have been isolated as low temperature, detergent-resistant membranes from many cell types, but despite their presumed importance as lateral sorting and signaling platforms, fundamental questions persist concerning raft function and even existence in vivo. The nonionic detergent Brij 98 was used to isolate lipid rafts from microvillar membrane vesicles of intestinal brush borders at physiological temperature to compare with rafts, obtained by "conventional" extraction using Triton X-100 at low temperature. Microvillar rafts prepared by the two protocols were morphologically different but had essentially similar profiles of protein- and lipid components, showing that raft microdomains do exist at 37 degrees C and are not "low temperature artifacts." We also employed a novel method of sequential detergent extraction at increasing temperature to define a fraction of highly detergent-resistant "superrafts." These were enriched in galectin-4, a beta-galactoside-recognizing lectin residing on the extracellular side of the membrane. Superrafts also harbored the glycosylphosphatidylinositol-linked alkaline phosphatase and the transmembrane aminopeptidase N, whereas the peripheral lipid raft protein annexin 2 was essentially absent. In conclusion, in the microvillar membrane, galectin-4, functions as a core raft stabilizer/organizer for other, more loosely raft-associated proteins. The superraft analysis might be applicable to other membrane microdomain systems.  (+info)