Secretion of the galectin family of mammalian carbohydrate-binding proteins. (9/637)

Galectins are cytosolic proteins that lack any signal sequence for transport into the endoplasmic reticulum and are not glycosylated, although several galectins contain consensus sites for N-glycosylation, indicating that these proteins do not traverse the ER-Golgi network. However, there is abundant evidence for the extracellular localisation of some galectins at cell surfaces, in the extracellular matrix and in cell secretions consistent with other evidence for extracellular roles of galectins as modulators of cell adhesion and signalling. How then are galectins secreted if not through the classical secretory pathway? Do all galectins share the same secretory pathway? Can a particular galectin utilise more than one secretory pathway? If galectins play important extracellular roles how is their secretion regulated in relation to function? These are still largely unanswered questions but recent studies are beginning to give glimpses into some novel aspects of the secretion of these intriguing proteins.  (+info)

The NH2 terminus of galectin-3 governs cellular compartmentalization and functions in cancer cells. (10/637)

Galectin-3 is a member of the beta-galactoside-binding protein family shown to be involved in tumor progression and metastasis. It has a unique primary structure consisting of three domains: a 12-amino acid leader sequence containing a casein kinase I serine phosphorylation site, which is preceded by a collagenase-sensitive Pro-Gly-rich motif, and a COOH-terminal half encompassing the carbohydrate-binding site. To study the functional role of the unusual leader sequence of galectin-3, a mutant cDNA that causes an 11-amino acid deletion in the NH2-terminal region was generated and expressed in galectin-3-null BT-549 human breast carcinoma cells. Deletion of the NH2 terminus resulted in abolition of the secretion of truncated galectin-3, loss of nuclear localization, and reduced carbohydrate-mediated functions compared with the wild-type protein. When green fluorescent protein was fused to the galectin-3 leader sequence and transiently transfected into BT-549 cells, the uniform cellular distribution of native green fluorescent protein was changed mainly to a nuclear pattern. To further investigate whether the functional changes observed in a galectin-3 with the 11 NH2-terminal amino acids deleted were due to loss of phosphorylation at Ser6, two point mutations were created at this serine: Ser6-->Ala and Ser6-->Glu. No obvious difference was observed in cellular localization between wild-type and Ser6-mutated transfectants. These results suggest a structural role for the NH2 terminus leader motif of galectin-3 in determining its cellular targeting and biological functions independent of phosphorylation.  (+info)

Galectin-3 is associated with the plasma membrane of lens fiber cells. (11/637)

PURPOSE: To discover proteins that have the potential to contribute to the tight packing of fiber cells in the lens. METHODS: Crude fiber cell membranes were isolated from ovine lens cortex. Proteins were separated by two-dimensional gel electrophoresis, and selected protein spots identified by micro-sequencing. The identification of galectin-3 was confirmed by immunoblotting with a specific antibody. The association of galectin-3 with the fiber cell plasma membrane was investigated using immunofluorescence microscopy, solubilization trials with selected reagents, and immunoprecipitation to identify candidate ligands. RESULTS: A cluster of three protein spots with an apparent molecular weight of 31,000 and isoelectric points ranging between 7 and 8.5 were resolved and identified as galectin-3. This protein was associated peripherally with the fiber cell plasma membrane and interacted with MP20, an abundant intrinsic membrane protein that had been identified previously as a component of membrane junctions between fiber cells. CONCLUSIONS: The detection of galectin-3 in the lens is a novel result and adds to the growing list of lens proteins with adhesive properties. Its location at the fiber cell membrane and its association with the junction-forming MP20 is consistent with a potential role in the development or maintenance of the tightly packed lens tissue architecture.  (+info)

Galectin-3 induces endothelial cell morphogenesis and angiogenesis. (12/637)

Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis. However, conflicting results on their function in the regulation of cell proliferation and differentiation during angiogenesis have been reported. We have examined the role of galectin-3 in the regulation of human umbilical vein endothelial cell proliferation, differentiation, migration, and neovascularization. Galectin-3, a carbohydrate-binding protein, with specificity for type 1 and 11 ABH blood group epitopes and polylactosamine glycan containing cell surface glycoproteins, is the major nonintegrin cellular laminin-binding protein. Because galectin-3 expression was shown to be associated in some tumor systems with metastasis, we questioned whether it induces endothelial cell morphogenesis. Here we show that galectin-3 affects chemotaxis and morphology and stimulates capillary tube formation of HUV-EC-C in vitro and angiogenesis in vivo. Endothelial cell morphogenesis is a carbohydrate-dependent process, as it is neutralized by specific sugars and antibodies. These findings demonstrate that endothelial cell surface carbohydrate recognition event(s) can induce a signaling cascade leading to the differentiation and angiogenesis of endothelial cells.  (+info)

Targeted disruption of the galectin-3 gene results in attenuated peritoneal inflammatory responses. (13/637)

Galectin-3 is a member of a growing family of beta-galactoside-binding animal lectins. Previous studies have demonstrated a variety of biological activities for this protein in vitro, including activation of cells, modulation of cell adhesion, induction of pre-mRNA splicing, and regulation of apoptosis. To assist in fully elucidating the physiological and pathological functions of this protein, we have generated galectin-3-deficient (gal3(-/-)) mice by targeted interruption of the galectin-3 gene. Gal3(-/-) mice consistently developed fewer inflammatory cell infiltrations in the peritoneal cavities than the wild-type (gal3(+/+)) mice in response to thioglycollate broth treatment, mainly due to lower numbers of macrophages. Also, when compared to cells from gal3(+/+) mice, thioglycollate-elicited inflammatory cells from gal3(-/-) mice exhibited significantly lower levels of NF-kappaB response. In addition, dramatically different cell-spreading phenotypes were observed in cultured macrophages from the two genotypes. Whereas macrophages from gal3(+/+) mice exhibited well spread out morphology, those from gal3(-/-) mice were often spindle-shaped. Finally, we found that peritoneal macrophages from gal3(-/-) mice were more prone to undergo apoptosis than those from gal3(+/+) mice when treated with apoptotic stimuli, suggesting that expression of galectin-3 in inflammatory cells may lead to longer cell survival, thus prolonging inflammation. These results strongly support galectin-3 as a positive regulator of inflammatory responses in the peritoneal cavity.  (+info)

Interaction between galectin-3 and FcgammaRII induces down-regulation of IL-5 gene: implication of the promoter sequence IL-5REIII. (14/637)

Our previous work demonstrated the capacity of galectin-3 (a beta-galactoside binding animal lectin) to inhibit IL-5 gene expression in different cell types, but the interaction of lectin with the cells and the pathways for the inhibition process are unknown. One of the purposes of this work was to study the cellular ligand for galectin-3. We have demonstrated that galectin-3 can bind to the low affinity IgG receptor (FcgammaRII or CD32) by using different experimental approaches, such as flow cytometry, fusion protein GST technology, and with a model of FcgammaRII-deficient mice. To further analyze the interaction between FcgammaRII and galectin-3, and its implication in IL-5 gene down-regulation we used FcgammaRII-deficient mice. When PBMC from these mice were incubated with galectin-3, the expression of the IL-5 gene was unchanged. However, when PBMC from wild type mice and FcgammaRIII-deficient mice were incubated with galectin-3, IL-5 gene expression was down-regulated. Finally, we studied the implication of the negative regulatory sequence in the IL-5 gene promoter. In the presence of galectin-3, a DNA-protein complex was formed with the IL-5REIII region. This complex was not observed when unrelated oligonucleotide was used. So, galectin-3 induces a pathway, which activates a transcription factor that binds to IL-5REIII. This interaction is capable of inhibiting IL-5 gene transcription.  (+info)

Requirement of divalent galactoside-binding activity of ecalectin/galectin-9 for eosinophil chemoattraction. (15/637)

We have previously isolated and cloned a novel eosinophil chemoattractant (ECA) from a human T-cell-derived expression library. This ECA, termed ecalectin, is a variant of human galectin-9, a member of a beta-galactoside binding animal lectin family, which contains two conserved carbohydrate recognition domains (CRDs). In the present study, we addressed whether carbohydrate binding activity is required for the ECA activity of ecalectin and whether both CRDs are essential for this activity. Recombinant full-length wild-type ecalectin (ecalectin-WT) and N-terminal and C-terminal CRD (ecalectin-NT and -CT, respectively) were generated. All of these recombinant proteins exhibited affinity for lactose, a property shared by galectins, but ecalectin-WT exhibited substantially higher hemagglutination activities than ecalectin-NT and -CT. Furthermore, ecalectin-WT showed over 100-fold higher ECA activity than ecalectin-NT and -CT; combination of recombinant domain fragments did not reconstitute the ECA and hemagglutination activities of the full-length protein. ECA activity of ecalectin-WT was inhibited by lactose in a dose-dependent manner. Site-directed mutation of positions Arg(65) of ecalectin-NT and Arg(239) of ecalectin-CT to an aspartic acid residue resulted in the loss of both lactose-binding and ECA activities. We conclude that divalent galactoside-binding activity is required for eosinophil chemoattraction by ecalectin.  (+info)

Interaction of a novel cysteine and histidine-rich cytoplasmic protein with galectin-3 in a carbohydrate-independent manner. (16/637)

We have used the yeast two-hybrid system to search for cytoplasmic proteins that might assist in the intracellular trafficking of the soluble beta-galactoside-binding protein, galectin-3. We utilised as bait murine full-length galectin-3 to screen a murine 3T3 cDNA library. Several interacting clones were found to encode a partial open reading frame and a full-length clone was obtained by rapid amplification of cDNA ends methodology. In various assays in vitro the novel protein was shown to bind galectin-3 in a carbohydrate-independent manner. The novel protein contains an unusually high content of cysteine and histidine residues and shows significant sequence homologies with several metal ion-binding motifs present in known proteins. Confocal immunofluorescence microscopy of permeabilised 3T3 cells shows a prominent perinuclear, as well as cytoplasmic, localisation of the novel protein.  (+info)