Terminal glycosylation of bovine uroplakin III, one of the major integral-membrane glycoproteins of mammalian bladder. (65/1005)

Uroplakin III (UPIII) is one of the major transmembrane glycoproteins exposed at the luminal face of mammalian bladder. We investigated the terminal glycosylation of bovine UPIII in order to ascertain whether it contains the alpha 2,3-sialylated sequence thus potentially serving as a receptor for uropathogenic Escherichia coli expressing type S adhesins. We report the occurrence of sialic acid in alpha 2,3- and alpha 2,6-linkage to galactose in bovine UPIII glycans as evidenced by the sensitivity of UPIII to both Vibrio cholera and Newcastle disease virus neuraminidase and by the colocalization of UPIII antigen and material detected by lectins of Sambucus nigra and Maackia amurensis on the luminal face of the bladder. We also present evidence that UPIII glycans are capped by Gal-alpha 1,3-Gal epitope. Consistently, alpha 2,3- and alpha 2, 6-sialyltransferase, as well as alpha 1,3-galactosyltransferase were found to be present in the cells detached from the luminal side of bovine bladder, which are responsible for the UPIII biosynthesis. The putative role of UPIII sialylated glycans in enhancing the uropathogenicity of E. coli expressing type S adhesins is discussed.  (+info)

Cloning and expression of beta1,4-galactosyltransferase gene from Helicobacter pylori. (66/1005)

Helicobacter pylori, which is a human pathogen associated with gastric and duodenal ulcer, has been shown to express human oncofetal antigens Lewis X and Lewis Y. Although the mammalian glycosyltransferases that synthesize these structures are well characterized, little is known about the corresponding bacterial enzymes. We report that a novel beta1,4-galactosyltransferase gene (HpgalT) involved in the biosynthesis of lipopolysaccharides in H. pylori has been cloned and expressed in Escherichia coli. The deduced amino acid sequence of the protein (HpGal-T) encoded by HpgalT consists of 274 residues with the calculated molecular mass of 31,731 Da, which does not show significant similarity to those of beta1,4-galactosyltransferases from mammalian sources and Neisseria It was confirmed that HpGal-T catalyzed the introduction of galactose from UDP-Gal in a beta1,4 linkage to accepting N-acetylglucosamine (GlcNAc) residues by means of high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). When the E.coli cells which overexpressed HpgalT was coupled with the UDP-Gal production system, which consisted of recombinant E.coli cells overexpressing its UDP-Gal biosynthetic genes and Corynebacterium ammoniagenes, N-acetyllactosamine, a core structure of lipopolysaccharide of H.pylori, was efficiently produced from orotic acid, galactose, and GlcNAc.  (+info)

N-glycan patterns of human transferrin produced in Trichoplusia ni insect cells: effects of mammalian galactosyltransferase. (67/1005)

The N-glycans of human serum transferrin produced in Trichopulsia ni cells were analyzed to examine N-linked oligosaccharide processing in insect cells. Metabolic radiolabeling of the intra- and extracellular protein fractions revealed the presence of multiple transferrin glycoforms with molecular weights lower than that observed for native human transferrin. Consequently, the N-glycan structures of transferrin in the culture medium were determined using three-dimensional high performance liquid chromatography. The attached oligosaccharides included high mannose, paucimannosidic, and hybrid structures with over 50% of these structures containing one fucose, alpha(1,6)-, or two fucoses, alpha(1,6)- and alpha(1,3)-, linked to the Asn-linked N-acetylglucosamine. Neither sialic acid nor galactose was detected on any of the N-glycans. However, when transferrin was coexpressed with beta(1,4)-galactosyltransferase three additional galactose-containing hybrid oligosaccharides were obtained. The galactose attachments were exclusive to the alpha(1, 3)-mannose branch and the structures varied by the presence of zero, one, or two attached fucose residues. Furthermore, the presence of the galactosyltransferase appeared to reduce the number of paucimannosidic structures, which suggests that galactose attachment inhibits the ability of hexosaminidase activity to remove the terminal N-acetylglucosamine. The ability to promote galactosylation and reduce paucimannosidic N-glycans suggests that the oligosaccharide processing pathway in insect cells may be manipulated to mimic more closely that of mammalian cells.  (+info)

Transgalactosylation by thermostable beta-glycosidases from Pyrococcus furiosus and Sulfolobus solfataricus. Binding interactions of nucleophiles with the galactosylated enzyme intermediate make major contributions to the formation of new beta-glycosides during lactose conversion. (68/1005)

The hyperthermostable beta-glycosidases from the Archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) hydrolyse beta-glycosides of D-glucose or D-galactose with relaxed specificities pertaining to the nature of the leaving group and the glycosidic linkage. To determine how specificity is manifested under conditions of kinetically controlled transgalactosylation, the major transfer products formed during the hydrolysis of lactose by these enzymes have been identified, and their appearance and degradation have been determined in dependence of the degree of substrate conversion. CelB and SsbetaGly show a marked preference for making new beta(1-->3) and beta(1-->6) glycosidic bonds by intermolecular as well as intramolecular transfer reactions. The intramolecular galactosyl transfer of CelB, relative to glycosidic-bond cleavage and release of glucose, is about 2.2 times that of SsbetaGly and yields beta-D-Galp-(1-->6)-D-Glc and beta-D-Galp-(1-->3)-D-Glc in a molar ratio of approximately 1 : 2. The partitioning of galactosylated SsbetaGly between reaction with sugars [kNu (M-1. s-1)] and reaction with water [kwater (s-1)] is about twice that of CelB. It gives a mixture of linear beta-D-glycosides, chiefly trisaccharides at early reaction times, in which the prevailing new glycosidic bonds are beta(1-->6) and beta(1-->3) for the reactions catalysed by SsbetaGly and CelB, respectively. The accumulation of beta-D-Galp-(1-->6)-D-Glc at the end of lactose hydrolysis reflects a 3-10-fold specificity of both enzymes for the hydrolysis of beta(1-->3) over beta(1-->6) linked glucosides. Galactosyl transfer from SsbetaGly or CelB to D-glucose occurs with partitioning ratios, kNu/kwater, which are seven and > 170 times those for the reactions of the galactosylated enzymes with 1-propanol and 2-propanol, respectively. Therefore, the binding interactions with nucleophiles contribute chiefly to formation of new beta-glycosides during lactose conversion. Likewise, noncovalent interactions with the glucose leaving group govern the catalytic efficiencies for the hydrolysis of lactose by both enzymes. They are almost fully expressed in the rate-limiting first-order rate constant for the galactosyl transfer from the substrate to the enzyme and lead to a positive deviation by approximately 2.5 log10 units from structure-reactivity correlations based on the pKa of the leaving group.  (+info)

Biosynthesis of the galactan component of the mycobacterial cell wall. (69/1005)

The structural core of the cell walls of Mycobacterium spp. consists of peptidoglycan bound by a linker unit (-alpha-L-Rhap-(1-->3)-D-GlcNAc-P-) to a galactofuran, which in turn is attached to arabinofuran and mycolic acids. The sequence of reactions leading to the biogenesis of this complex starts with the formation of the linker unit on a polyprenyl-P to produce polyprenyl-P-P-GlcNAc-Rha (Mikusova, K., Mikus, M., Besra, G. S., Hancock, I., and Brennan, P. J. (1996) J. Biol. Chem. 271, 7820-7828). We now establish that formation of the galactofuran takes place on this intermediate with UDP-Galf as the Galf donor presented in the form of UDP-Galp and UDP-Galp mutase (the glf gene product) and is catalyzed by galactofuranosyl transferases, one of which, the Mycobacterium tuberculosis H37Rv3808c gene product, has been identified. Evidence is also presented for the growth of the arabinofuran on this polyprenyl-P-P-linker unit-galactan intermediate catalyzed by unidentified arabinosyl transferases, with decaprenyl-P-Araf or 5-P-ribosyl-PP as the Araf donor. The product of these steps, the lipid-linked-LU-galactan-arabinan has been partially characterized in terms of its heterogeneity, size, and composition. Biosynthesis of the major components of mycobacterial cell walls is proving to be extremely complex. However, partial definition of arabinogalactan synthesis, the site of action of several major anti-tuberculosis drugs, facilitates the present day thrust for new drugs to counteract multiple drug-resistant tuberculosis.  (+info)

Kidney lipids in galactosylceramide synthase-deficient mice. Absence of galactosylsulfatide and compensatory increase in more polar sulfoglycolipids. (70/1005)

UDP-galactose:ceramide galactosyltransferase (CGT) catalyzes the final step in the synthesis of galactosylceramide (GalCer). It has previously been shown that CGT-deficient mice do not synthesize GalCer and its sulfated derivative GalCer I(3)-sulfate (galactosylsulfatide, SM4s) but form myelin containing glucosylceramide (GlcCer) and sphingomyelin with 2-hydroxy fatty acids. Because relatively high concentrations of GalCer and SM4s are present also in mammalian kidney, we analyzed the composition of lipids in the kidney of Cgt(-/-) and, as a control, Cgt(+/-) and wild-type mice. The homozygous mutant mice lacked GalCer, galabiaosylceramide (Ga(2)Cer), and SM4s. Yet, they did not show any major morphological or functional defects in the kidney. A slight increase in GlcCer containing 4-hydroxysphinganine was evident among neutral glycolipids. Intriguingly, more polar sulfoglycolipids, that is, lactosylceramide II(3)-sulfate (SM3) and gangliotetraosylceramide II(3),IV(3)-bis-sulfate (SB1a), were expressed at 2 to 3 times the normal levels in Cgt(-/-) mice, indicating upregulation of biosynthesis of SB1a from GlcCer via SM3. Given that SM4s is a major polar glycolipid constituting renal tubular membrane, the increase in SM3 and SB1a in the mice deficient in CGT and thus SM4s appears to be a compensatory process, which could partly restore kidney function in the knockout mice.  (+info)

DGD1-independent biosynthesis of extraplastidic galactolipids after phosphate deprivation in Arabidopsis. (71/1005)

The galactolipids, mono- and digalactosyldiacylglycerol (DGDG), are the most common nonphosphorous lipids in the biosphere and account for 80% of the membrane lipids found in green plant tissues. These lipids are major constituents of photosynthetic membranes (thylakoids), and a large body of evidence suggests that galactolipids are associated primarily with plastid membranes in seed plants. A null-mutant of Arabidopsis (dgd1), which lacks the DGDG synthase (DGD1) resulting in a 90% reduction in the amount of DGDG under normal growth conditions, accumulated DGDG after phosphate deprivation up to 60% of the amount present in the wild type. This observation suggests the existence of a DGD1-independent pathway of galactolipid biosynthesis. The fatty acid composition of the newly formed DGDG was distinct, showing an enrichment of 16-carbon fatty acids in the C-1 position of the glycerol backbone of DGDG. Roots with their rudimentary plastids accumulated large amounts of DGDG after phosphate deprivation, suggesting that this galactolipid may be located in extraplastidic membranes. Corroborating evidence for this hypothesis was obtained directly by fractionation of subcellular membranes from leaf tissue and indirectly by lipid analysis of the phosphate-deprived fad3 mutant primarily deficient in extraplastidic fatty acid desaturation. The discovery of extraplastidic DGDG biosynthesis induced by phosphate deprivation has revealed a biochemical mechanism for plants to conserve phosphate. Apparently, plants replace phospholipids with nonphosphorous galactolipids if environmental conditions such as phosphate deprivation require this for survival.  (+info)

Membrane-associated nucleotide sugar reactions: influence of mutations affecting lipopolysaccharide on the first enzyme of O-antigen synthesis. (72/1005)

Both the synthesis of lipopolysaccharide O-antigen and the synthesis of peptidoglycan in Salmonella typhimurium proceed via membrane-bound glycosylated lipid intermediates. The first enzyme of each pathway transfers a sugar phosphate from a nucleotide sugar to the glycosyl carrier lipid (P-GCL). Each enzyme catalyzes an exchange reaction between the reaction product urine monophosphate, and the nucleotide sugar substrate. Several strains of S. typhimurium defective in lipopolysaccharide synthesis accumulate glycosylated lipid intermediates under appropriate conditions. In addition, strains lysogenic for phage P22 synthesize a glucose derivative of the carrier lipid. These strains were used to demonstrate the P/GCL requirement of the exchange reaction catalyzed by galactose-diphosphoglycosyl carrier lipid (GCL-PP-Gal) synthetase, the first enzyme of O-antigen synthesis. Enzyme activity is greatly reduced when glycosylated P-GCL accumulates on the cytoplasmic membrane. The exchange reaction catalyzed by the first enzyme of peptidoglycan synthesis is unaffected by the accumulation of O-antigen fragments on the carrier lipid and may interact with a different pool of P-GCL within the membrane. GCL-PP-Gal synthetase activity cannot be detected in the membranes of two rfa mutants that synthesize incomplete lipopolysaccharide core. Either the synthesis of GCL-PP-Gal synthetase or the stable integration of the enzyme into the membrane structure may be disrupted in the rfa mutants. Peptidoglycan synthesis is unaffected by the mutations affecting the core glycosyltransferases.  (+info)