Requirement of seminolipid in spermatogenesis revealed by UDP-galactose: Ceramide galactosyltransferase-deficient mice. (57/1005)

Although seminolipid has long been suspected to play an essential role in spermatogenesis because of its uniquely abundant and temporally regulated expression in the spermatocytes, direct experimental evidence has been lacking. We have tested the hypothesis by examining the testis of the UDP-galactose:ceramide galactosyltransferase-deficient mouse, which is incapable of synthesizing seminolipid. Spermatogenesis in homozygous affected males is arrested at the late pachytene stage and the spermatogenic cells degenerate through the apoptotic process. This stage closely follows the phase of rapid seminolipid synthesis in the wild-type mouse. These observations not only provide the first experimental evidence that seminolipid is indeed essential for normal spermatogenesis but also support the broader concept that cell surface glycolipids are important in cellular differentiation and cell-to-cell interaction.  (+info)

The beta 1,3-galactosyltransferase beta 3GalT-V is a stage-specific embryonic antigen-3 (SSEA-3) synthase. (58/1005)

We have previously reported the molecular cloning of beta1, 3-galactosyltransferase-V (beta3GalT-V), which catalyzes the transfer of Gal to GlcNAc-based acceptors with a preference for the core3 O-linked glycan GlcNAc(beta1,3)GalNAc structure. Further characterization indicated that the recombinant beta3GalT-V enzyme expressed in Sf9 insect cells also utilized the glycolipid Lc3Cer as an efficient acceptor. Surprisingly, we also found that beta3GalT-V catalyzes the transfer of Gal to the terminal GalNAc unit of the globoside Gb4, thereby synthesizing the glycolipid Gb5, also known as the stage-specific embryonic antigen-3 (SSEA-3). The SSEA-3 synthase activity of beta3GalT-V was confirmed in vivo by stable expression of the human beta3GalT-V gene in F9 mouse teratocarcinoma cells, as detected with the monoclonal antibody MC-631 by flow cytometry analysis and immunostaining of extracted glycolipids. The biological relation between SSEA-3 formation and beta3GalT-V was further documented by showing that F9 cells treated with the differentiation-inducing agent retinoic acid induced the expression of both the SSEA-3 epitope and the endogenous mouse beta3GalT-V gene. This study represents the first example of a glycosyltransferase, which utilizes two kinds of sugar acceptor substrates without requiring any additional modifier molecule.  (+info)

Novel processive and nonprocessive glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana synthesize glycoglycerolipids, glycophospholipids, glycosphingolipids and glycosylsterols. (59/1005)

A processive diacylglycerol glucosyltransferase has recently been identified from Bacillus subtilis [Jorasch, P., Wolter, F.P., Zahringer, U., and Heinz, E. (1998) Mol. Microbiol. 29, 419-430]. Now we report the cloning and characterization of two other genes coding for diacylglycerol glycosyltransferases from Staphylococcus aureus and Arabidopsis thaliana; only the S. aureus enzyme shows processivity similar to the B. subtilis enzyme. Both glycosyltransferases characterized in this work show unexpected acceptor specificities. We describe the isolation of the ugt106B1 gene (GenBank accession number Y14370) from the genomic DNA of S. aureus and the ugt81A1 cDNA (GenBank accession number AL031004) from A. thaliana by PCR. After cloning and expression of S. aureus Ugt106B1 in Escherichia coli, SDS/PAGE of total cell extracts showed strong expression of a protein having the predicted size of 44 kDa. Thin-layer chromatographic analysis of the lipids extracted from the transformed E. coli cells revealed several new glycolipids and phosphoglycolipids not present in the controls. These lipids were purified from lipid extracts of E. coli cells expressing the S. aureus gene and identified by NMR and mass spectrometry as 1, 2-diacyl-3-[O-beta-D-glucopyranosyl]-sn-glycerol, 1, 2-diacyl-3-[O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyrano-+ ++syl] -sn-glycerol, 1, 2-diacyl-3-[O-beta-D-glucopyranosyl-(1-->6)-O-beta-D-glucopyranosyl-( 1-->6)-O-beta-D-glucopyranosyl]-sn-glycerol, sn-3'-[O-beta-D-glucopyranosyl]-phosphatidylglycerol and sn-3'-[O-(6"'-O-acyl)-beta-D-glucopyranosyl-(1"'-->6")-O-beta-D-gluco pyranosyl]-sn-2'-acyl-phospha-tidylglycerol. A 1, 2-diacyl-3-[O-beta-D-galactopyranosyl]-sn-glycerol was isolated from extracts of E. coli cells expressing the ugt81A1 cDNA from A. thaliana. The enzymatic activities expected to catalyze the synthesis of these compounds were confirmed by in vitro assays with radioactive substrates. Experiments with several of the above described glycolipids as 14C-labeled sugar acceptors and unlabeled UDP-glucose as glucose donor, suggest that the ugt106B1 gene codes for a processive UDP-glucose:1, 2-diacylglycerol-3-beta-D-glucosyltransferase, whereas ugt81A1 codes for a nonprocessive diacylglycerol galactosyltransferase. As shown in additional assays with different lipophilic acceptors, both enzymes use diacylglycerol and ceramide, but Ugt106B1 also accepts glucosyl ceramide as well as cholesterol and cholesterol glucoside as sugar acceptors.  (+info)

Expression cloning of a new member of the ABO blood group glycosyltransferases, iGb3 synthase, that directs the synthesis of isoglobo-glycosphingolipids. (60/1005)

The large array of different glycolipids described in mammalian tissues is a reflection, in part, of diverse glycosyltransferase expression. Herein, we describe the cloning of a UDP-galactose: beta-d-galactosyl-1,4-glucosylceramide alpha-1, 3-galactosyltransferase (iGb(3) synthase) from a rat placental cDNA expression library. iGb(3) synthase acts on lactosylceramide, LacCer (Galbeta1,4Glcbeta1Cer) to form iGb(3) (Galalpha1,3Galbeta1, 4Glcbeta1Cer) initiating the synthesis of the isoglobo-series of glycosphingolipids. The isolated cDNA encoded a predicted protein of 339 amino acids, which shows extensive homology (40-50% identity) to members of the ABO gene family that includes: murine alpha1, 3-galactosyltransferase, Forssman (Gb(5)) synthase, and the ABO glycosyltransferases. In contrast to the murine alpha1, 3-galactosyltransferase, iGb(3) synthase preferentially modifies glycolipids over glycoprotein substrates. Reverse transcriptase-polymerase chain reaction revealed a widespread tissue distribution of iGb(3) synthase RNA expression, with high levels observed in spleen, thymus, and skeletal muscle. As an indirect consequence of the expression cloning strategy used, we have been able to identify several potential glycolipid biosynthetic pathways where iGb(3) functions, including the globo- and isoglobo-series of glycolipids.  (+info)

Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. (61/1005)

We have cloned Gb(3) synthase, the key alpha1, 4-galactosyltransferase in globo-series glycosphingolipid (GSL) synthesis, via a phenotypic screen, which previously yielded iGb(3) synthase, the alpha1,3-galactosyltransferase required in isoglobo-series GSL (Keusch, J. J., Manzella, S. M., Nyame, K. A., Cummings, R. D., and Baenziger, J. U. (2000) J. Biol. Chem. 33). Both transferases act on lactosylceramide, Galbeta1,4Glcbeta1Cer (LacCer), to produce Gb(3) (Galalpha1,4LacCer) or iGb(3) (Galalpha1, 3LacCer), respectively. GalNAc can be added sequentially to either Gb(3) or iGb(3) yielding globoside and Forssman from Gb(3), and isogloboside and isoForssman from iGb(3). Gb(3) synthase is not homologous to iGb(3) synthase but shows 43% identity to a human alpha1,4GlcNAc transferase that transfers a UDP-sugar in an alpha1, 4-linkage to a beta-linked Gal found in mucin. Extensive homology (35% identity) is also present between Gb(3) synthase and genes in Drosophila melanogaster and Arabidopsis thaliana, supporting conserved expression of an alpha1,4-glycosyltransferase, possibly Gb(3) synthase, throughout evolution. The isolated Gb(3) synthase cDNA encodes a type II transmembrane glycosyltransferase of 360 amino acids. The highest tissue expression of Gb(3) synthase RNA is found in the kidney, mesenteric lymph node, spleen, and brain. Gb(3) glycolipid, also called P(k) antigen or CD77, is a known receptor for verotoxins. CHO cells that do not express Gb(3) and are resistant to verotoxin become susceptible to the toxin following transfection with Gb(3) synthase cDNA.  (+info)

Galactolipid deficiency and abnormal chloroplast development in the Arabidopsis MGD synthase 1 mutant. (62/1005)

The lipid monogalactosyl diacylglycerol (MGD) is a major structural component of photosynthetic membranes in chloroplasts. Its formation is catalyzed by the enzyme MGD synthase. In many plants, MGD derives from two different biosynthetic pathways: the prokaryotic pathway, which operates entirely within the plastid, and the eukaryotic pathway, which involves steps in the endoplasmic reticulum. Here, we describe the identification and characterization of an Arabidopsis mutant with a defective MGD synthase gene (MGD1). The mutant was identified in a screen of T-DNA lines for individuals with defects in chloroplast biogenesis. It has a yellow-green phenotype that correlates with a approximately 50% deficiency in total chlorophyll per plant. A single T-DNA insertion is located adjacent to the transcription initiation site of the MGD1 gene, and the abundance of MGD1 mRNA is reduced by 75% compared with wild type. Correlation between steady-state MGD1 transcript levels and MGD synthase activity (also reduced by 75% in mgd1) suggests that MGD1 is the most important MGD synthase in green tissues. The amount of MGD in mutant leaves is reduced by 42% compared with wild type. MGD from the mutant contains 23% less 16:3 fatty acid and 10% more 18:3 fatty acid. Because 16:3 is a characteristic feature of MGD from the prokaryotic pathway, it is possible that MGD1 operates with some preference in the prokaryotic pathway. Finally, the MGD-deficiency of mgd1 is correlated with striking defects in chloroplast ultrastructure, strongly suggesting a unique role for MGD in the structural organization of plastidic membranes.  (+info)

Identification of phloem involved in assimilate loading in leaves by the activity of the galactinol synthase promoter. (63/1005)

The definition of "minor" veins in leaves is arbitrary and of uncertain biological significance. Generally, the term refers to the smallest vein classes in the leaf, believed to function in phloem loading. We found that a galactinol synthase promoter, cloned from melon (Cucumis melo), directs expression of the gusA gene to the smallest veins of mature Arabidopsis and cultivated tobacco (Nicotiana tabacum) leaves. This expression pattern is consistent with the role of galactinol synthase in sugar synthesis and phloem loading in cucurbits. The expression pattern in tobacco is especially noteworthy since galactinol is not synthesized in the leaves of this plant. Also, we unexpectedly found that expression in tobacco is limited to two of three companion cells in class-V veins, which are the most extensive in the leaf. Thus, the "minor" vein system is defined and regulated at the genetic level, and there is heterogeneity of response to this system by different companion cells of the same vein.  (+info)

Changing the donor cofactor of bovine alpha 1, 3-galactosyltransferase by fusion with UDP-galactose 4-epimerase. More efficient biocatalysis for synthesis of alpha-Gal epitopes. (64/1005)

Two fusion enzymes consisting of uridine diphosphogalactose 4-epimerase (UDP-galactose 4-epimerase, EC ) and alpha1, 3-galactosyltransferase (EC ) with an N-terminal His(6) tag and an intervening three-glycine linker were constructed by in-frame fusion of the Escherichia coli galE gene either to the 3' terminus (f1) or to the 5' terminus (f2) of a truncated bovine alpha1, 3-galactosyltransferase gene, respectively. Both fusion proteins were expressed in cell lysate as active, soluble forms as well as in inclusion bodies as improperly folded proteins. Both f1 and f2 were determined to be homodimers, based on a single band observed at about 67 kDa in SDS-polyacrylamide gel electrophoresis and on a single peak with a molecular mass around 140 kDa determined by gel filtration chromatography for each of the enzymes. Without altering the acceptor specificity of the transferase, the fusion with the epimerase changed the donor requirement of alpha1, 3-galactosyltransferase from UDP-galactose to UDP-glucose and decreased the cost for the synthesis of biomedically important Galalpha1,3Gal-terminated oligosaccharides by more than 40-fold. For enzymatic synthesis of Galalpha1,3Galbeta1,4Glc from UDP-glucose and lactose, the genetically fused enzymes f1 and f2 exhibited kinetic advantages with overall reaction rates that were 300 and 50%, respectively, higher than that of the system containing equal amounts of epimerase and galactosyltransferase. These results indicated that the active sites of the epimerase and the transferase in fusion enzymes were in proximity. The kinetic parameters suggested a random mechanism for the substrate binding of the alpha1, 3-galactosyltransferase. This work demonstrated a general approach that fusion of a glycosyltransferase with an epimerase can change the required but expensive sugar nucleotide to a less expensive one.  (+info)