Differential expression of beta1,3galactosyltransferases in human colon cells derived from adenocarcinomas or normal mucosa. (17/1005)

Two beta1,3galactosyltransferases are detected in human colon cells: one corresponds to beta3GalT1, the other (beta3GalTx) is found to be different from any cloned beta3GalT since in vitro it utilizes GlcNAc very efficiently under specific reaction conditions. Expression of beta3GalT1 transcript is high in normal colon mucosa and control neuroectodermal cells, which do not express sialyl-Lewis a antigen, and low in colon adenocarcinoma cells, as assessed by competitive RT-PCR. beta3GalTx activity is high in adenocarcinoma cells expressing sialyl-Lewis a and undetectable in all other cells, suggesting differential involvement and opposite regulation of such enzymes during carcinogenesis.  (+info)

Poly-N-acetyllactosamine synthesis in branched N-glycans is controlled by complemental branch specificity of I-extension enzyme and beta1,4-galactosyltransferase I. (18/1005)

Poly-N-acetyllactosamine is a unique carbohydrate that can carry various functional oligosaccharides, such as sialyl Lewis X. It has been shown that the amount of poly-N-acetyllactosamine is increased in N-glycans, when they contain Galbeta1-->4GlcNAcbeta1-->6(Galbeta1-->4GlcNAcbeta1 -->2)Manalpha1-->6 branched structure. To determine how this increased synthesis of poly-N-acetyllactosamines takes place, the branched acceptor was incubated with a mixture of i-extension enzyme (iGnT) and beta1, 4galactosyltransferase I (beta4Gal-TI). First, N-acetyllactosamine repeats were more readily added to the branched acceptor than the summation of poly-N-acetyllactosamines formed individually on each unbranched acceptor. Surprisingly, poly-N-acetyllactosamine was more efficiently formed on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain than in Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R, due to preferential action of iGnT on Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chain. On the other hand, galactosylation was much more efficient on beta1,6-linked GlcNAc than beta1,2-linked GlcNAc, preferentially forming Galbeta1-->4GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalph a1-->6Manbeta -->R. Starting with this preformed acceptor, N-acetyllactosamine repeats were added almost equally to Galbeta1-->4GlcNAcbeta1-->6Manalpha-->R and Galbeta1-->4GlcNAcbeta1-->2Manalpha-->R side chains. Taken together, these results indicate that the complemental branch specificity of iGnT and beta4Gal-TI leads to efficient and equal addition of N-acetyllactosamine repeats on both side chains of GlcNAcbeta1-->6(GlcNAcbeta1-->2)Manalpha1-->6Manbet a-->R structure, which is consistent with the structures found in nature. The results also suggest that the addition of Galbeta1-->4GlcNAcbeta1-->6 side chain on Galbeta1-->4GlcNAcbeta1-->2Man-->R side chain converts the acceptor to one that is much more favorable for iGnT and beta4Gal-TI.  (+info)

Characterization of the substrate specificity of alpha1,3galactosyltransferase utilizing modified N-acetyllactosamine disaccharides. (19/1005)

alpha1,3galactosyltransferase (alpha1,3GalT) catalyzes the synthesis of a range of glycoconjugates containing the Galalpha1,3Gal epitope which is recognized by the naturally occurring human antibody, anti-Gal. This enzyme may be a useful synthetic tool to produce a range of compounds to further investigate the binding site of anti-Gal and other proteins with a Galalpha1,3Gal binding site. Thus, the enzyme has been probed with a series of type 2 disaccharide-C8(Galbeta1-4GlcNAc-C8) analogs. The enzyme tolerated acceptors with modifications at C2 and C3 of the N-acetylglucosamine residue, producing a family of compounds with a nonreducing alpha1,3 linked galactose. Compounds that did not serve as acceptors were evaluated as inhibitors. Interestingly, the type 1 disaccharide-C8, Galbeta1-3GlcNAc-C8, was a good inhibitor of the enzyme (Ki = 270 microM vs. Km = 190 microM for Galbeta1-4GlcNAc-C8). A potential photoprobe, based on a modified type 2 disaccharide (octyl 3-amino-3-deoxy-3-N-(2-diazo-3, 3, 3-trifluoropropionyl-beta-D-galactopyranosyl-(1, 4)-2-acetamindo-2-deoxy-beta-D-glycopyranoside, (DTFP-LacNAc-C8)), was evaluated as an inhibitor of alpha1,3GalT. alpha1,3GalT bound DTFP-LacNAc-C8 with an affinity (Ki = 300 microM) similar to that displayed by the enzyme for LacNAc-C8. Additional studies were done to determine the enzyme's ability to transfer a range of sugars from UDP-sugar donors. The results of these experiments demonstrated that alpha1,3GalT has a strict specificity for UDP-Gal. Finally, inactivation studies with various amino acid modifiers were done to obtain information on the importance of different types of amino acids for alpha1,3GalT activity.  (+info)

Fold recognition study of alpha3-galactosyltransferase and molecular modeling of the nucleotide sugar-binding domain. (20/1005)

The structure and fold of the enzyme responsible for the biosynthesis of the xenotransplantation antigen, namely pig alpha3 galactosyltransferase, has been studied by means of computational methods. Secondary structure predictions indicated that alpha3-galactosyltransferase and related protein family members, including blood group A and B transferases and Forssman synthase, are likely to consist of alternating alpha-helices and beta-strands. Fold recognition studies predicted that alpha3-galactosyltransferase shares the same fold as the T4 phage DNA-modifying enzyme beta-glucosyltransferase. This latter enzyme displays a strong structural resemblance with the core of glycogen phosphorylase b. By using the three-dimensional structure of beta-glucosyltransferase and of several glycogen phosphorylases, the nucleotide binding domain of pig alpha3-galactosyltransferase was built by knowledge-based methods. Both the UDP-galactose ligand and a divalent cation were included in the model during the refinement procedure. The final three-dimensional model is in agreement with our present knowledge of the biochemistry and mechanism of alpha3-galactosyltransferases.  (+info)

Arabidopsis galactolipid biosynthesis and lipid trafficking mediated by DGD1. (21/1005)

The photosynthetic apparatus in plant cells is associated with membranes of the thylakoids within the chloroplast and is embedded into a highly specialized lipid matrix. Diacylglycerol galactolipids are common in thylakoid membranes but are excluded from all others. Isolation of the gene DGD1, encoding a galactosyltransferase-like protein, now provides insights into assembly of the thylakoid lipid matrix and subcellular lipid trafficking in Arabidopsis thaliana.  (+info)

Role of a conserved acidic cluster in bovine beta1,4 galactosyltransferase-1 probed by mutagenesis of a bacterially expressed recombinant enzyme. (22/1005)

The truncated catalytic domain of bovine beta1,4 galactosyltransferase-1 was expressed as inclusion bodies in E.coli and folded to generate 10-15 mg of active enzyme per liter of bacterial culture after extraction and purification under denaturing conditions. Mutations were introduced to investigate the roles of Trp312, Asp318, and Asp320, components of a highly conserved region of sequence in all known beta4GT-1 homologues that includes a cluster of acidic residues. Near and far UV CD spectra of the mutants indicate that the substitutions did not perturb the secondary and tertiary structure of beta4GT-1, and steady state kinetic studies indicate only minor effects on the response to an essential metal cofactor. However substitutions for the two aspartyl residues result in a reduction in catalytic efficiency of a magnitude that suggests they are important for catalysis. It seems possible that this anionic center may act in stabilizing a carbocation formed from the galactose component of the donor substrate in the transition state, reflecting a common reaction mechanism for beta-galactosyltransferase reactions.  (+info)

Molecular cloning of a human UDP-galactose:GlcNAcbeta1,3GalNAc beta1, 3 galactosyltransferase gene encoding an O-linked core3-elongation enzyme. (23/1005)

Using the full-length amino-acid sequences of the human beta1,3 galactosyltransferase (beta3GalT)-I, -II and III enzymes as query, we have identified an additional member of the beta3GalT gene family within a sequenced region of the human chromosome 21 as found in GenBank. The novel human beta3GalT-V gene included an open reading frame of 933 bp encoding a protein of 310 amino acids with a short N-terminal cytoplasmic tail, a single predicted transmembrane domain and a large lumenal catalytic domain. The human beta3GalT-V protein showed 34%, 27%, 31% and 23% sequence identity with the human beta3GalT-I, -II, -III and -IV enzymes, respectively. The expression of beta3GalT-V as a recombinant protein in Sf9 insect cells confirmed the galactosyltransferase activity catalyzed by this enzyme. Similarly to beta3GalT-I, -II and -III, the beta3GalT-V enzyme used beta-linked GlcNAc as an acceptor, but unlike the former enzymes beta3GalT-V exhibited a marked preference for the O-linked core3 GlcNAcbeta1,3GalNAc substrate. The beta3GalT-V gene was mainly expressed in human small intestine and to a lesser extent in pancreas and testis. Although beta3GalT-V transcripts were not detected in normal colon tissue, based on Northern analysis, beta3GalT-V mRNA was found in the adenocarcinoma cell line Colo 205.  (+info)

The level of cell surface beta1,4-galactosyltransferase I influences the invasive potential of murine melanoma cells. (24/1005)

Beta1,4-Galactosyltransferase I (GalT I) is localized on the leading lamellipodia of migrating cells, where it associates with the cytoskeleton and facilitates cell spreading and migration on basal lamina matrices. It has previously been reported that a variety of highly metastatic murine and human cell lines are characterized by elevated levels of cell surface GalT I, although the intracellular biosynthetic pool is similar between cells of high and low metastatic potential. In this study, we examined whether the elevated expression of surface GalT I characteristic of metastatic cells is instructive or incidental to their metastatic behavior by altering the expression of surface GalT I and by the use of GalT I-specific perturbants. Surface GalT I levels were positively and negatively altered on murine melanoma cells by either overexpressing full-length GalT I or by homologous recombination, respectively. The consequences of altered surface GalT I expression on cell invasion in vitro and lung colonization in vivo were determined. Increasing surface GalT I expression on cells of low metastatic potential to levels characteristic of highly metastatic cells recapitulated the highly invasive phenotype in vitro. Alternatively, decreasing surface GalT I expression on highly metastatic cells to levels characteristic of low metastatic cells reduced their invasive behavior in vitro and metastatic activity in vivo. Within the physiological range of surface GalT I expression, the invasive potential of each clonal cell line correlated strongly with the level of surface GalT I expressed. As an independent means to assess the involvement of surface GalT I in metastatic behavior, cells were pretreated with two different classes of surface GalT I perturbants, a competitive oligosaccharide substrate and a substrate modifier protein. Both perturbants inhibited metastatic colonization of the lung, whereas control reagents did not. Finally, as reported by others, surface GalT I on metastatic cells selectively interacted with one glycoprotein substrate, or ligand, of approximately 100 kDa, the identity of which remains obscure. These results show that the elevated expression of surface GalT I characteristic of highly metastatic cells contributes to their invasive phenotype in vitro and to their metastatic phenotype in vivo.  (+info)