Regulation of the interleukin-7 receptor alpha promoter by the Ets transcription factors PU.1 and GA-binding protein in developing B cells. (57/170)

Signaling through the IL-7 receptor (IL-7R) is required for development and maintenance of the immune system. The receptor for IL-7 is heterodimeric, consisting of a common gamma chain (gammac, encoded by Il2rg) and an alpha subunit (IL-7Ralpha, encoded by Il7r). The Il7r gene is expressed specifically in the immune system in a developmental stage-specific manner. It is not known how the Il7r gene is transcriptionally regulated during B cell development. The goal of this study is to elucidate the function of the Il7r promoter region in developing B cells. Using a combination of 5' rapid amplification of cDNA ends analysis, transient transfection assays, and DNase I hypersensitivity mapping, we identified the location of the Il7r promoter. Using a combination of electrophoretic mobility shift analysis, chromatin immunoprecipitation experiments, and RNA interference experiments, we found that the Ets transcription factors PU.1 and GA-binding protein (GABP) activate the Il7r promoter by interacting with a highly conserved Ets binding site. In committed B lineage cells, GABP can promote Il7r transcription in the absence of PU.1. However, the results of retroviral gene transfer experiments suggest that PU.1 is uniquely required to initiate transcription of the Il7r locus at the earliest stages of progenitor B cell generation. In summary, these results suggest that Il7r transcription is regulated by both PU.1 and GABP in developing B cells.  (+info)

The role of Ets transcription factors in the basal transcription of the translocator protein (18 kDa). (58/170)

The translocator protein (18 kDa; TSPO), previously known as peripheral-type benzodiazepine receptor, is a high-affinity cholesterol- and drug-binding mitochondrial protein involved in various cell functions including steroidogenesis, apoptosis, and proliferation. TSPO is highly expressed in secretory and glandular tissues, especially in steroidogenic cells, and its expression is altered in certain pathological conditions such as cancer and neurological diseases. In this study, we characterized the regulatory elements present in the region of the TPSO promoter extending from 515 to 805 bp upstream of the transcription start site, an area previously identified as being important for transcription. Promoter fragments extending 2.7 kb and 805 bp upstream of the transcription start site were able to direct enhanced green fluorescent protein expression to Leydig cells of the testis, theca cells of the ovary, and cells of the adrenal cortex in transgenic animals. This expression pattern perfectly mimicked endogenous TSPO expression. Functional characterization of the 515-805 bp region revealed the presence of one specificity protein 1/specificity protein 3 (Sp1/Sp3) and two v-ets erythroblastosis virus E26 oncogene homologue (Ets) binding sites that are important for transcriptional activity in both MA-10 mouse Leydig tumor cells and NIH/3T3 whole mouse embryo fibroblasts. GA-binding protein alpha (GABPalpha), a member of the Ets family of transcription factors, was found to be associated with the endogenous TSPO promoter. We conclude that Sp1/Sp3 and members of the Ets family of transcription factors bind to specific binding sites in the TSPO promoter to drive basal TSPO gene transcription.  (+info)

PGC-1alpha regulates the neuromuscular junction program and ameliorates Duchenne muscular dystrophy. (59/170)

The coactivator PGC-1alpha mediates key responses of skeletal muscle to motor nerve activity. We show here that neuregulin-stimulated phosphorylation of PGC-1alpha and GA-binding protein (GABP) allows recruitment of PGC-1alpha to the GABP complex and enhances transcription of a broad neuromuscular junction gene program. Since a subset of genes controlled by PGC-1alpha and GABP is dysregulated in Duchenne muscular dystrophy (DMD), we examined the effects of transgenic PGC-1alpha in muscle of mdx mice. These animals show improvement in parameters characteristic of DMD, including muscle histology, running performance, and plasma creatine kinase levels. Thus, control of PGC-1alpha levels in skeletal muscle could represent a novel avenue to prevent or treat DMD.  (+info)

The transcription factor GABP is a critical regulator of B lymphocyte development. (60/170)

GA binding protein (GABP) is a ubiquitously expressed Ets-family transcription factor that critically regulates the expression of the interleukin-7 receptor alpha chain (IL-7Ralpha) in T cells, whereas it is dispensable for IL-7Ralpha expression in fetal liver B cells. Here we showed that deficiency of GABPalpha, the DNA-binding subunit of GABP, resulted in profoundly defective B cell development and a compromised humoral immune response, in addition to thymic developmental defects. Furthermore, the expression of Pax5 and Pax5 target genes such as Cd79a was greatly diminished in GABPalpha-deficient B cell progenitors, pro-B, and mature B cells. GABP could bind to the regulatory regions of Pax5 and Cd79a in vivo. Thus, GABP is a key regulator of B cell development, maturation, and function.  (+info)

GA-binding protein is dispensable for neuromuscular synapse formation and synapse-specific gene expression. (61/170)

The mRNAs encoding postsynaptic components at the neuromuscular junction are concentrated in the synaptic region of muscle fibers. Accumulation of these RNAs in the synaptic region is mediated, at least in part, by selective transcription of the corresponding genes in synaptic myofiber nuclei. The transcriptional mechanisms that are responsible for synapse-specific gene expression are largely unknown, but an Ets site in the promoter regions of acetylcholine receptor (AChR) subunit genes and other "synaptic" genes is required for synapse-specific transcription. The Ets domain transcription factor GA-binding protein (GABP) has been implicated to mediate synapse-specific gene expression. Inactivation of GABPalpha, the DNA-binding subunit of GABP, leads to early embryonic lethality, preventing analysis of synapse formation in gabpalpha mutant mice. To study the role of GABP at neuromuscular synapses, we conditionally inactivated gabpalpha in skeletal muscle and studied synaptic differentiation and muscle gene expression. Although expression of rb, a target of GABP, is elevated in muscle tissue deficient in GABPalpha, clustering of synaptic AChRs at synapses and synapse-specific gene expression are normal in these mice. These data indicate that GABP is dispensable for synapse-specific transcription and maintenance of normal AChR expression at synapses.  (+info)

A three-kilobase fragment of the human Robo4 promoter directs cell type-specific expression in endothelium. (62/170)

Robo4, a member of the roundabout family, is expressed exclusively in endothelial cells and has been implicated in endothelial cell migration and angiogenesis. Here we report the cloning and characterization of the human Robo4 promoter. The 3-kb 5'-flanking region directs endothelial cell-specific expression in vitro. Deletion and mutation analyses revealed the functional importance of two 12-bp palindromic DNA sequences at -2528 and -2941, 2 SP1 consensus motifs at -42 and -153, and an ETS consensus motif at -119. In electrophoretic mobility shift assays using supershifting antibodies, the SP1 motifs bound SP1 protein, whereas the ETS site bound a heterodimeric member of the ETS family, GA binding protein (GABP). These DNA-protein interactions were confirmed by chromatin immunoprecipitation assays. Transfection of primary human endothelial cells with small interfering RNA against GABP and SP1 resulted in a significant (approximately 50%) reduction in endogenous Robo4 mRNA expression. The 3-kb Robo4 promoter was coupled to LacZ, and the resulting cassette was introduced into the Hprt locus of mice by homologous recombination. Reporter gene activity was observed in the vasculature of adult organs (particularly in microvessels), tumor xenografts, and embryos, where it colocalized with the endothelial cell-specific marker CD31. LacZ mRNA levels in adult tissues and tumors correlated with mRNA levels for endogenous Robo4, CD31, and vascular endothelial cadherin. Moreover, the pattern of reporter gene expression was similar to that observed in mice in which LacZ was knocked into the endogenous Robo4 locus. Together, these data suggest that 3-kb upstream promoter of human Robo4 contains information for cell type-specific expression in the intact endothelium.  (+info)

Ets-2 repressor factor silences extrasynaptic utrophin by N-box mediated repression in skeletal muscle. (63/170)

Utrophin is the autosomal homologue of dystrophin, the protein product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin expression is temporally and spatially regulated being developmentally down-regulated perinatally and enriched at neuromuscular junctions (NMJs) in adult muscle. Synaptic localization of utrophin occurs in part by heregulin-mediated extracellular signal-regulated kinase (ERK)-phosphorylation, leading to binding of GABPalpha/beta to the N-box/EBS and activation of the major utrophin promoter-A expressed in myofibers. However, molecular mechanisms contributing to concurrent extrasynaptic silencing that must occur to achieve NMJ localization are unknown. We demonstrate that the Ets-2 repressor factor (ERF) represses extrasynaptic utrophin-A in muscle. Gel shift and chromatin immunoprecipitation studies demonstrated physical association of ERF with the utrophin-A promoter N-box/EBS site. ERF overexpression repressed utrophin-A promoter activity; conversely, small interfering RNA-mediated ERF knockdown enhanced promoter activity as well as endogenous utrophin mRNA levels in cultured muscle cells in vitro. Laser-capture microscopy of tibialis anterior NMJ and extrasynaptic transcriptomes and gene transfer studies provide spatial and direct evidence, respectively, for ERF-mediated utrophin repression in vivo. Together, these studies suggest "repressing repressors" as a potential strategy for achieving utrophin up-regulation in DMD, and they provide a model for utrophin-A regulation in muscle.  (+info)

Mitochondrial biogenesis restores oxidative metabolism during Staphylococcus aureus sepsis. (64/170)

RATIONALE: The extent, timing, and significance of mitochondrial injury and recovery in bacterial sepsis are poorly characterized, although oxidative and nitrosative mitochondrial damage have been implicated in the development of organ failure. OBJECTIVES: To define the relationships between mitochondrial biogenesis, oxidative metabolism, and recovery from Staphylococcus aureus sepsis. METHODS: We developed a murine model of fibrin clot peritonitis, using S. aureus. The model yielded dose-dependent decreases in survival and resting energy expenditure, allowing us to study recovery from sublethal sepsis. MEASUREMENTS AND MAIN RESULTS: Peritonitis caused by 10(6) colony-forming units of S. aureus induced a low tumor necrosis factor-alpha state and minimal hepatic cell death, but activated prosurvival protein kinase A, B, and C sequentially over 3 days. Basal metabolism by indirect calorimetry was depressed because of selective mitochondrial oxidative stress and subsequent loss of mitochondrial DNA copy number. During recovery, mitochondrial biogenesis was strongly activated by regulated expression of the requisite nuclear respiratory factors 1 and 2 and the coactivator peroxisome proliferator-activated receptor gamma coactivator-1alpha, as well as by repression of the biogenesis suppressor nuclear receptor interacting protein-140. Biogenesis reconstituted mitochondrial DNA copy number and transcription, and restored basal metabolism without significant hepatocellular proliferation. These events dramatically increased hepatic mitochondrial density in transgenic mice expressing mitochondrially targeted green fluorescent protein. CONCLUSIONS: This is the first demonstration that mitochondrial biogenesis restores oxidative metabolism in bacterial sepsis and is therefore an early and important prosurvival factor.  (+info)