Egr-1 inhibits apoptosis during the UV response: correlation of cell survival with Egr-1 phosphorylation. (17/2526)

UV irradiation of normal or immortalized cells induces a rapid increase in the expression of several transcription factors and is thought to serve a protective function. The human fibrosarcoma cell line, HT1080 clone H4, expresses almost undetectable levels of Egr-1 and does not respond to UV-C irradiation by the induction of Egr-1. The H4 cells are hypersensitive to UV which induces apoptosis and reduces clonogenicity. The introduction of exogenous Egr-1 into H4 (H4E9 and H4E4 cell-lines) confers protection from UV damage as measured by a number of assays. In both NIH3T3 (with inducible Egr-1) and H4E9 (constitutive Egr-1) cells, UV irradiation gave enhanced transactivation of Egr-1 reporters that correlated with phosphorylated Egr-1. Studies using inhibitors indicated that protein kinase-C and tyrosine kinases are involved in the anti-apoptotic effects of Egr-1 after UV damage. This is the first description of a biological effect of phosphorylated Egr-1.  (+info)

Irradiation induces G2/M cell cycle arrest and apoptosis in p53-deficient lymphoblastic leukemia cells without affecting Bcl-2 and Bax expression. (18/2526)

The tumor suppressor p53 has been implicated in gamma irradiation-induced apoptosis. To investigate possible consequences of wild-type p53 loss in leukemia, we studied the effect of a single dose of gamma irradiation upon p53-deficient human T-ALL (acute lymphoblastic leukemia) CCRF - CEM cells. Exposure to 3 - 96 Gy caused p53-independent cell death in a dose and time-dependent fashion. By electron microscopic and other criteria, this cell death was classified as apoptosis. At low to intermediate levels of irradiation, apoptosis was preceded by accumulation of cells in the G2/M phase of the cell division cycle. Expression of Bcl-2 and Bax were not detectably altered after irradiation. Expression of the temperature sensitive mouse p53 V135 mutant induced apoptosis on its own but only slightly increased the sensitivity of CCRF - CEM cells to gamma irradiation. Thus, in these, and perhaps other leukemia cells, a p53- and Bcl-2/Bax-independent mechanism is operative that efficiently senses irradiation effects and translates this signal into arrest in the G2/M phase of the cell cycle and subsequent apoptosis.  (+info)

Actinobacillus actinomycetemcomitans immunosuppressive protein is a member of the family of cytolethal distending toxins capable of causing a G2 arrest in human T cells. (19/2526)

We have previously shown that Actinobacillus actinomycetecomitans produces an immunosuppressive factor (ISF) capable of impairing human lymphocyte function by perturbing cell cycle progression. We now report that ISF is the product of the cdtB gene, one of three genes encoding the family of cytolethal distending toxins (Cdt). The ISF polypeptide exhibits >/=95% identity with Hemophilus ducreyi CdtB protein and +info)

Speedy: a novel cell cycle regulator of the G2/M transition. (20/2526)

Stage VI Xenopus oocytes are suspended at the G2/M transition of meiosis I, and represent an excellent system for the identification and examination of cell cycle regulatory proteins. Essential cell cycle regulators such as MAPK, cyclins and mos have the ability to induce oocyte maturation, causing the resumption of the cell cycle from its arrested state. We have identified the product of a novel Xenopus gene, Speedy or Spy1, which is able to induce rapid maturation of Xenopus oocytes, resulting in the induction of germinal vesicle breakdown (GVBD) and activation of M-phasepromoting factor (MPF). Spy1 activates the MAPK pathway in oocytes, and its ability to induce maturation is dependent upon this pathway. Spy1-induced maturation occurs much more rapidly than maturation induced by other cell cycle regulators including progesterone, mos or Ras, and does not require any of these proteins or hormones, indicating that Spy1-induced maturation proceeds through a novel regulatory pathway. In addition, we have shown that Spy1 physically interacts with cdk2, and prematurely activates cdk2 kinase activity. Spy1 therefore represents a novel cell cycle regulatory protein, inducing maturation through the activation of MAPK and MPF, and also leading to the premature activation of cdk2.  (+info)

Maintenance of G2 arrest in the Xenopus oocyte: a role for 14-3-3-mediated inhibition of Cdc25 nuclear import. (21/2526)

Cdc2-cyclin B1 in the G2-arrested Xenopus oocyte is held inactive by phosphorylation of Cdc2 at two negative regulatory sites, Thr14 and Tyr15. Upon treatment with progesterone, these sites are dephosphorylated by the dual specificity phosphatase, Cdc25, leading to Cdc2-cyclin B1 activation. Whereas maintenance of the G2 arrest depends upon preventing Cdc25-induced Cdc2 dephosphorylation, the mechanisms responsible for keeping Cdc25 in check in these cells have not yet been described. Here we report that Cdc25 in the G2-arrested oocyte is bound to 14-3-3 proteins and that progesterone treatment abrogates this binding. We demonstrate that Cdc25, apparently statically localized in the cytoplasm, is actually capable of shuttling in and out of the oocyte nucleus. Binding of 14-3-3 protein markedly reduces the nuclear import rate of Cdc25, allowing nuclear export mediated by a nuclear export sequence present in the N-terminus of Cdc25 to predominate. If 14-3-3 binding to Cdc25 is prevented while nuclear export is inhibited, the coordinate nuclear accumulation of Cdc25 and Cdc2-cyclin B1 facilitates their mutual activation, thereby promoting oocyte maturation.  (+info)

Cyclic AMP delays G2 progression and prevents efficient accumulation of cyclin B1 proteins in mouse macrophage cells. (22/2526)

In mouse macrophage cells, the increase of the intracellular cAMP level activates protein kinase A (PKA) and results in inhibition of cell cycle progression in both G1 and G2/M phases. G1 arrest is mediated by a cdk inhibitor, p27Kip1, which prevents G1 cyclin/cdk complexes from being activated in response to colony stimulating factor-1, whereas inhibition of G2/M progression has not been fully elucidated. In this report we analyzed the effect of cAMP on G2/M progression in a mouse macrophage cell line, BAC1.2F5A. Flow cytometric analysis and mitotic index measurement using both synchronized and asynchronized cells revealed that addition of cAMP-elevating agents (8-bromoadenosine 3':5'-cyclic monophosphate and 3-isobutyl-methyl-xanthine), although they did not affect S phase progression or M/G1 transition, temporarily arrested cells in G2 but eventually the cells proceeded to M phase, resulting in about 4 hours delay of G2 progression. Timing of cyclin B1/Cdc2 kinase activation was also retarded by about 4 hours, which was accompanied by inhibition of efficient accumulation of cyclin B1 proteins. Initial induction and accumulation of cyclin B1 mRNA were not hampered, but the half life of cyclin B1 proteins was significantly shorter during G2 phase in the presence of cAMP-elevating agents compared with that of the cells blocked from progressing through M phase by nocodazole. These results imply that the cAMP/PKA pathway regulates G2 phase progression by altering the stability of a crucial cell cycle regulator.  (+info)

Caffeine-mediated override of checkpoint controls. A requirement for rhp6 (Schizosaccharomyces pombe). (23/2526)

Cells exposed to inhibitors of DNA synthesis or suffering DNA damage are arrested or delayed in interphase through the action of checkpoint controls. If the arrested cell is exposed to caffeine, relatively normal cell cycle progression is resumed and, as observed in checkpoint control mutants, loss of checkpoint control activity is associated with a reduction in cell viability. To address the mechanism of caffeine's action on cell progression, fission yeast mutants that take up caffeine but are not sensitized to hydroxyurea (HU) by caffeine were selected. Mutants 788 and 1176 are point mutants of rhp6, the fission yeast homolog of the budding yeast RAD6 gene. Mutant rhp6-788 is slightly HU sensitive, radiosensitive, and exhibits normal checkpoint responses to HU, radiation, or inactivation of DNA ligase. However, the addition of caffeine does not override the associated cell cycle blocks. Both point and deletion mutations show synthetic lethality at room temperature with temperature-sensitive mutations in cyclin B (cdc13-117) or the phosphatase cdc25 (cdc25-22). These observations suggest that the rhp6 gene product, a ubiquitin-conjugating enzyme required for DNA damage repair, promotes entry to mitosis in response to caffeine treatment.  (+info)

Modulation of drug resistance mediated by loss of mismatch repair by the DNA polymerase inhibitor aphidicolin. (24/2526)

Loss of expression of mismatch repair (MMR) proteins leads to resistance of tumor cells to a variety of DNA-damaging agents, including bifunctional alkylating and monofunctional methylating agents such as cis-diaminedichloroplatinum II (CDDP) and N'-methyl-N-nitrosourea (MNU). It has been suggested that coupling to cell death does not occur in the absence of MMR, but instead, DNA lesions are bypassed during replication, giving a drug-tolerant phenotype. In the present study, we have used aphidicolin (Ap), an inhibitor of DNA polymerases, to study the role of replicative bypass in drug resistance mediated by loss of MMR. We have examined the survival of matched ovarian carcinoma cell lines with known MMR status after sequential treatment with CDDP or MNU and Ap. We show that Ap increases the sensitivity of MMR-deficient cell lines to CDDP and MNU to a greater extent than their MMR-proficient counterparts. Furthermore, loss of MMR correlates with loss of CDDP-induced G2 arrest, but this is partially restored after Ap treatment. These data support Ap sensitizing drug-resistant cancer cells that have lost MMR to CDDP and MNU and suggest that the potential use of Ap as a modulator of drug resistance should be targeted to MMR-defective tumors.  (+info)