Calmodulin dependence of presynaptic metabotropic glutamate receptor signaling. (17/480)

Glutamatergic neurotransmission is controlled by presynaptic metabotropic glutamate receptors (mGluRs). A subdomain in the intracellular carboxyl-terminal tail of group III mGluRs binds calmodulin and heterotrimeric guanosine triphosphate-binding protein (G protein) betagamma subunits in a mutually exclusive manner. Mutations interfering with calmodulin binding and calmodulin antagonists inhibit G protein-mediated modulation of ionic currents by mGluR 7. Calmodulin antagonists also prevent inhibition of excitatory neurotransmission via presynaptic mGluRs. These results reveal a novel mechanism of presynaptic modulation in which Ca(2+)-calmodulin is required to release G protein betagamma subunits from the C-tail of group III mGluRs in order to mediate glutamatergic autoinhibition.  (+info)

Molecular cloning and characterization of a novel splicing variant of the Kir3.2 subunit predominantly expressed in mouse testis. (18/480)

1. One of the features of weaver mutant mice is male infertility, which suggests that Kir3.2, a G-protein-gated inwardly rectifying K+ channel subunit, may be involved in spermatogenesis. Therefore, we have characterized the Kir3.2 isoform in mouse testis using immunological, molecular biological and electrophysiological techniques. 2. Testicular membrane contained a protein that was recognized by the antibody specific to the C-terminus of Kir3.2c (aG2C-3). Its molecular mass was approximately 45 kDa, which was smaller than that of Kir3.2c ( approximately 48 kDa). The immunoprecipitant obtained from testis with aG2C-3 contained a single band of the 45 kDa protein, which could not be detected by the antibody to the N-terminus common to the known Kir3.2 isoforms (aG2N-2). 3. A novel alternative splicing variant of Kir3.2, designated Kir3.2d, was isolated from a mouse testis cDNA library. The cDNA had an open reading frame encoding 407 amino acids, whose molecular mass was calculated to be approximately 45 kDa. Kir3.2d was 18 amino acids shorter than Kir3.2c at its N-terminal end, which was the only difference between the two clones. The 18 amino acid region possesses the epitope for aG2N-2. 4. In heterologous expression systems of both Xenopus oocytes and mammalian cells (HEK 293T), Kir3.2d either alone or with Kir3.1 exhibited G-protein-gated inwardly rectifying K+ channel activity. 5. Prominent Kir3.2d immunoreactivity in the testis was detected exclusively in the acrosomal vesicles of spermatids, while Kir3.1 immunoreactivity was diffuse in the spermatogonia and spermatocytes. These results indicate the possibility that the testicular variant of Kir3.2, Kir3. 2d, may assemble to form a homomultimeric G-protein-gated K+ channel and be involved in the development of the acrosome during spermiogenesis.  (+info)

Distinct specificities of inwardly rectifying K(+) channels for phosphoinositides. (19/480)

Activation of several inwardly rectifying K(+) channels (Kir) requires the presence of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). The constitutively active Kir2.1 (IRK1) channels interact with PtdIns(4,5)P(2) strongly, whereas the G-protein activated Kir3.1/3.4 channels (GIRK1/GIRK4), show only weak interactions with PtdIns(4,5)P(2). We investigated whether these inwardly rectifying K(+) channels displayed distinct specificities for different phosphoinositides. IRK1, but not GIRK1/GIRK4 channels, showed a marked specificity toward phosphates in the 4,5 head group positions. GIRK1/GIRK4 channels were activated with a similar efficacy by PtdIns(3,4)P(2), PtdIns(3,5)P(2), PtdIns(4,5)P(2), and PtdIns(3,4,5)P(3). In contrast, IRK1 channels were not activated by PtdIns(3,4)P(2) and only marginally by high concentrations of PtdIns(3,5)P(2). Similarly, high concentrations of PtdIns(3,4,5)P(3) were required to activate IRK1 channels. For either channel, PtdIns(4)P was much less effective than PtdIns(4,5)P(2), whereas PtdIns was inactive. In contrast to the dependence on the position of phosphates of the phospholipid head group, GIRK1/GIRK4, but not IRK1 channel activation, showed a remarkable dependence on the phospholipid acyl chains. GIRK1/GIRK4 channels were activated most effectively by the natural arachidonyl stearyl PtdIns(4,5)P(2) and much less by the synthetic dipalmitoyl analog, whereas IRK1 channels were activated equally by dipalmitoyl and arachidonyl stearyl PtdIns(4,5)P(2). Incorporation of PtdInsP(2) into the membrane is necessary for activation, as the short chain water soluble diC(4) PtdIns(4,5)P(2) did not activate either channel, whereas activation by diC(8) PtdIns(4, 5)P(2) required high concentrations.  (+info)

Importance of the G protein gamma subunit in activating G protein-coupled inward rectifier K(+) channels. (20/480)

The G protein-coupled inward rectifier K(+) channel (GIRK) is activated by direct interaction with the heterotrimeric GTP-binding protein betagamma subunits (Gbetagamma). However, the precise role of Gbeta and Ggamma in GIRK activation remains to be elucidated. Using transient expression of GIRK1, GIRK2, Gbeta1, and Ggamma2 in human embryonic kidney 293 cells, we show that C-terminal mutants of Gbeta1, which do not bind to Ggamma2, are still able to associate with GIRK, but these mutants are unable to induce activation of GIRK channels. In contrast, other C-terminal mutants of Gbeta1 that bind to Ggamma2, are capable of activating the GIRK channel. These results suggest that Ggamma plays a more important role than that of an anchoring device for the Gbetagamma-induced GIRK activation.  (+info)

The G protein alpha subunit has a key role in determining the specificity of coupling to, but not the activation of, G protein-gated inwardly rectifying K(+) channels. (21/480)

In neuronal and atrial tissue, G protein-gated inwardly rectifying K(+) channels (Kir3.x family) are responsible for mediating inhibitory postsynaptic potentials and slowing the heart rate. They are activated by Gbetagamma dimers released in response to the stimulation of receptors coupled to inhibitory G proteins of the G(i/o) family but not receptors coupled to the stimulatory G protein G(s). We have used biochemical, electrophysiological, and molecular biology techniques to examine this specificity of channel activation. In this study we have succeeded in reconstituting such specificity in an heterologous expression system stably expressing a cloned counterpart of the neuronal channel (Kir3.1 and Kir3.2A heteromultimers). The use of pertussis toxin-resistant G protein alpha subunits and chimeras between G(i1) and G(s) indicate a central role for the G protein alpha subunits in determining receptor specificity of coupling to, but not activation of, G protein-gated inwardly rectifying K(+) channels.  (+info)

Neuronal inwardly rectifying K(+) channels differentially couple to PDZ proteins of the PSD-95/SAP90 family. (22/480)

Several signaling proteins clustered at the postsynaptic density specialization in neurons harbor a conserved C-terminal PDZ domain recognition sequence (X-S/T-X-V/I) that mediates binding to members of the PSD-95/SAP90 protein family. This motif is also present in the C termini of some inwardly rectifying K(+) (Kir) channels. Constitutively active Kir2 channels as well as G protein-gated Kir3 channels, which are fundamental for neuronal excitability, were analyzed as candidates for binding to PSD-95/SAP90 family members. Therefore C termini of Kir2.1(+), Kir2.3(+), Kir2.4(-), Kir3.1(-), Kir3.2(+), Kir3.3(+) and Kir3.4(-) subunits (+, motif present; -, motif absent) were used as baits in the yeast two-hybrid assay to screen for in vivo interaction with PDZ domains 1-3 of PSD-95/SAP90. In contrast to Kir2.1 and Kir2.3, all Kir3 fragments failed to bind PSD-95 in this assay, which was supported by the lack of coimmunoprecipitation and colocalization of the entire proteins in mammalian cells. A detailed analysis of interaction domains demonstrated that the C-terminal motif in Kir3 channels is insufficient for binding PDZ domains. Kir2.1 and Kir2.3 subunits on the other hand coprecipitate with PSD-95. When coexpressed in a bicistronic internal ribosome entry site expression vector in HEK-293 cells macroscopic and elementary current analysis revealed that PSD-95 suppressed the activity of Kir2.3 channels by >50%. This inhibitory action of PSD-95, which predominantly affects the single-channel conductance, is likely attributable to a molecular association with additional internal interaction sites in the Kir2.3 protein.  (+info)

Coupling of the muscarinic m2 receptor to G protein-activated K(+) channels via Galpha(z) and a receptor-Galpha(z) fusion protein. Fusion between the receptor and Galpha(z) eliminates catalytic (collision) coupling. (23/480)

G protein-activated K(+) channel (GIRK), which is activated by the G(betagamma) subunit of heterotrimeric G proteins, and muscarinic m2 receptor (m2R) were coexpressed in Xenopus oocytes. Acetylcholine evoked a K(+) current, I(ACh), via the endogenous pertussis toxin (PTX)-sensitive G(i/o) proteins. Activation of I(ACh) was accelerated by increasing the expression of m2R, suggesting a collision coupling mechanism in which one receptor catalytically activates several G proteins. Coexpression of the alpha subunit of the PTX-insensitive G protein G(z), Galpha(z), induced a slowly activating PTX-insensitive I(ACh), whose activation kinetics were also compatible with the collision coupling mechanism. When GIRK was coexpressed with an m2R x Galpha(z) fusion protein (tandem), in which the C terminus of m2R was tethered to the N terminus of Galpha(z), part of I(ACh) was still eliminated by PTX. Thus, the m2R of the tandem activates the tethered Galpha(z) but also the nontethered G(i/o) proteins. After PTX treatment, the speed of activation of the m2R x Galpha(z)-mediated response did not depend on the expression level of m2R x Galpha(z) and was faster than when m2R and Galpha(z) were coexpressed as separate proteins. These results demonstrate that fusing the receptor and the Galpha strengthens their coupling, support the collision-coupling mechanism between m2R and the G proteins, and suggest a noncatalytic (stoichiometric) coupling between the G protein and GIRK in this model system.  (+info)

Kir3.1/3.2 encodes an I(KACh)-like current in gastrointestinal myocytes. (24/480)

Expression of the Kir3 channel subfamily in gastrointestinal (GI) myocytes was investigated. Members of this K(+) channel subfamily encode G protein-gated inwardly rectifying K(+) channels (I(KACh)) in other tissues, including the heart and brain. In the GI tract, I(KACh) could act as a negative feedback mechanism to temper the muscarinic response mediated primarily through activation of nonselective cation currents and inhibition of delayed-rectifier conductance. Kir3 channel subfamily isoforms expressed in GI myocytes were determined by performing RT-PCR on RNA isolated from canine colon, ileum, duodenum, and jejunum circular myocytes. Qualitative PCR demonstrated the presence of Kir3.1 and Kir3.2 transcripts in all smooth muscle cell preparations examined. Transcripts for Kir3.3 and Kir3.4 were not detected in the same preparations. Semiquantitative PCR showed similar transcriptional levels of Kir3.1 and Kir3.2 relative to beta-actin expression in the various GI preparations. Full-length cDNAs for Kir3.1 and Kir3.2 were cloned from murine colonic smooth muscle RNA and coexpressed in Xenopus oocytes with human muscarinic type 2 receptor. Superfusion of oocytes with ACh (10 microM) reversibly activated a Ba(2+)-sensitive and inwardly rectifying K(+) current. Immunohistochemistry using Kir3.1- and Kir3.2-specific antibodies demonstrated channel expression in circular and longitudinal smooth muscle cells. We conclude that an I(KACh) current is expressed in GI myocytes encoded by Kir3.1/3.2 heterotetramers.  (+info)