Transcriptional repression of human hepatitis B virus genes by a bZIP family member, E4BP4. (1/138)

Box alpha is an essential element of both the upstream regulatory sequence of the core promoter and the second enhancer, which positively regulate the transcription of human hepatitis B virus (HBV) genes. In this paper, we describe the cloning and characterization of a box alpha binding protein, E4BP4. E4BP4 is a bZIP type of transcription factor. Overexpression of E4BP4 represses the stimulating activity of box alpha in the upstream regulatory sequence of the core promoter and the second enhancer in differentiated human hepatoma cell lines. E4BP4 can also suppress the transcription of HBV genes and the production of HBV virions in a transient-transfection system that mimics the viral infection in vivo. Expression of an E4BP4 antisense transcript can, instead, elevate the transcription of the core promoter. A low abundance of E4BP4 protein and mRNA in differentiated human hepatoma cell lines is detected, and E4BP4 is not a major component of box alpha binding proteins in untransfected differentiated human hepatoma cell lines. C/EBPalpha and C/EBPbeta, in contrast, are major components of the box alpha binding activity present in nuclear extracts. E4BP4 has a stronger binding affinity towards box alpha than the endogenous box alpha binding activity present in nuclear extracts. Structure and function analysis of E4BP4 reveals that DNA binding activity is sufficient to confer the negative regulatory function of E4BP4. These results indicate that binding site occlusion is the mechanism whereby E4BP4 suppresses transcription in HBV.  (+info)

Two distinct interleukin-3-mediated signal pathways, Ras-NFIL3 (E4BP4) and Bcl-xL, regulate the survival of murine pro-B lymphocytes. (2/138)

Hematopoietic cells require cytokine-initiated signals for survival as well as proliferation. The pathways that transduce these signals, ensuring timely regulation of cell fate genes, remain largely undefined. The NFIL3 (E4BP4) transcription factor, Bcl-xL, and constitutively active mutants of components in Ras signal transduction pathways have been identified as key regulation proteins affecting murine interleukin-3 (IL-3)-dependent cell survival. Here we show that expression of NFIL3 is regulated by oncogenic Ras mutants through both the Raf-mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways. NFIL3 inhibits apoptosis without affecting Bcl-xL expression. By contrast, Bcl-xL levels are regulated through the membrane proximal portion in the cytoplasmic domain of the receptor (betac chain), which is shared by IL-3 and granulocyte-macrophage colony-stimulating factor. Activation of either pathway alone is insufficient to ensure cell survival, indicating that multiple independent signal transduction pathways mediate the survival of developing B-lymphoid cells.  (+info)

Herpes simplex virus transactivator VP16 discriminates between HCF-1 and a novel family member, HCF-2. (3/138)

Herpes simplex virus infection is initiated by VP16, a viral transcription factor that activates the viral immediate-early (IE) genes. VP16 does not recognize the IE gene promoters directly but instead forms a multiprotein complex with Oct-1 and HCF-1, a ubiquitous nuclear protein required for progression through the G1 phase of the cell cycle. The functional significance of recruiting HCF-1 to the VP16-induced complex is not understood. Here we describe the identification of a second HCF-like protein, designated HCF-2. HCF-2 is smaller than HCF-1 but shares three regions of strong amino acid sequence homology, including the beta-propeller domain required for association with VP16. HCF-2 is expressed in many tissues, especially the testis, and shows a more dynamic pattern of subcellular localization than HCF-1. Although HCF-2 associates with VP16 and can support complex assembly with Oct-1 and DNA, it is significantly less efficient than HCF-1. A similar preference is shown by LZIP, a cellular counterpart of VP16. Analysis of chimeric proteins showed that differences between the fifth and sixth kelch repeats of the beta-propeller domains from HCF-1 and HCF-2 dictate this selectivity. These results reveal an unexpected level of specificity in the recruitment of HCF-1 to the VP16-induced complex, paralleling the preferential selection of Oct-1 rather than the closely related POU domain protein Oct-2. Implications for regulation of the viral life cycle are discussed.  (+info)

Ubiquitination and degradation of ATF2 are dimerization dependent. (4/138)

Ubiquitination and proteasome-dependent degradation are key determinants of the half-lives of many transcription factors. Homo- or heterodimerization of basic region-leucine zipper (bZIP) transcription factors is required for their transcriptional activities. Here we show that activating transcription factor 2 (ATF2) heterodimerization with specific bZIP proteins is an important determinant of the ubiquitination and proteasome-dependent degradation of ATF2. Depletion of c-Jun as one of the ATF2 heterodimer partners from the targeting proteins decreased the efficiency of ATF2 ubiquitination in vitro, whereas the addition of exogenously purified c-Jun restored it. Similarly, overexpression of c-Jun in 293T human embryo kidney cells increased ATF2 ubiquitination in vivo and reduced its half-life in a dose-dependent manner. Mutations of ATF2 that disrupt its dimerization inhibited ATF2 ubiquitination in vitro and in vivo. Conversely, removal of residues 150 to 248, as in a constitutively active ATF2 spliced form, enhanced ATF2 dimerization and transactivation, which coincided with increased ubiquitination and decreased stability. Our findings indicate the increased sensitivity of transcriptionally active dimers of ATF2 to ubiquitination and proteasome-dependent degradation. Based on these observations, we conclude that increased targeting of a transcriptionally active ATF2 form indicates the mechanism by which the magnitude and the duration of the cellular stress response are regulated.  (+info)

GC factor 2 represses platelet-derived growth factor A-chain gene transcription and is itself induced by arterial injury. (5/138)

Platelet-derived growth factor (PDGF) is a mitogen and chemoattractant for a wide variety of cell types. The genes encoding PDGF A chain (PDGF-A) and PDGF B chain (PDGF-B) reside on separate chromosomes and are independently regulated at the level of transcription. Regulatory events underlying inducible PDGF-A expression have been the focus of much investigation. However, mechanisms that inhibit transcription of this gene are not well understood. In this study, we report the capacity of a newly cloned DNA binding factor, GC factor 2 (GCF2), to repress expression driven by the human PDGF-A promoter. 5' Deletion and transient cotransfection analysis in vascular endothelial cells revealed that GCF2 repression is mediated by a nucleotide region located in the proximal region of the PDGF-A promoter. Electrophoretic mobility shift assays demonstrate that GCF2 binds to this region in a specific and dose-dependent manner. Interestingly, the site bound by GCF2 overlaps those for specificity protein-1 (Sp1) and early growth response factor-1 (Egr-1), zinc finger transcription factors that direct basal and inducible expression of the PDGF-A gene. Gel shift experiments revealed that GCF2 competes with these factors for interaction with the PDGF-A promoter. Overexpression of GCF2 suppressed endogenous PDGF-A expression in vascular endothelial cells and smooth muscle cells. GCF2 was induced on mechanical injury of cells in culture as well as after balloon injury of the rat carotid artery wall. Time course studies revealed the sustained induction of GCF2 after injury while PDGF-A levels sharply returned to baseline. Smooth muscle cell proliferation was inhibited by GCF2, an effect reversed by the addition of exogenous PDGF-AA. These findings demonstrate negative regulation of PDGF-A expression by GCF2. This is the first report of the induction of an endogenous transcriptional repressor in the rat vessel wall.  (+info)

Identification of cis-regulating elements and trans-acting factors regulating the expression of the gene encoding the small subunit of ribonucleotide reductase in Dictyostelium discoideum. (6/138)

We have examined the promoter of rnrB, the gene encoding the small subunit of ribonucleotide reductase of Dictyostelium discoideum, using lacZ as a reporter gene. Deletion analysis showed that expression of this gene in vegetative cells involves an A/T-rich element, whereas its expression in prespore cells during development requires a region encompassing two G/C-rich elements, designated box A and box B. Removal of boxes A and B results in very low level of activity. When either box A or box B is deleted, prestalk cells adjacent to the prespore zone also express beta-galactosidase. The behavior of these cis-regulatory elements implies that the mechanism regulating the prespore-specific expression of rnrB is different from that regulating other known prespore genes. We have used electrophoretic mobility shift assays to identify factors that interact with box A and box B. Box A interacts with a factor that is found in the nuclear fraction. While box B interacts with a factor that is present in the cytosolic fraction throughout growth and development, its presence in the nuclear fraction is developmentally regulated. Results from competition assays suggest that both box A and box B interact with transcriptional activators that have not been characterized previously.  (+info)

Reduction of G-box binding factor DNA binding activity, but not G-box binding factor abundance, causes the downregulation of RBCS2 expression during early tomato fruit development. (7/138)

The downregulation of RBCS2 promoter activity during tomato fruit development has been investigated by transient gene expression. A major drop in promoter activity occurs between 5 and 25 mm fruit diameter, corresponding to the late cell division to early cell enlargement phase. This drop is abolished by a mutation of the single G-box element necessary for high RBCS2 promoter activity in young tomato fruit. The G-box binding activity of fruit nuclear and total protein extracts drops concomitantly with the reduction of RBCS2 promoter activity while G-box binding factor expression is not affected. The data indicate that the developmental signal that downregulates the RBCS2 promoter acts on the regulation of DNA binding activity of constitutively expressed G-box binding factors.  (+info)

CHOP enhancement of gene transcription by interactions with Jun/Fos AP-1 complex proteins. (8/138)

The transcription factor CHOP (C/EBP homologous protein 10) is a bZIP protein induced by a variety of stimuli that evoke cellular stress responses and has been shown to arrest cell growth and to promote programmed cell death. CHOP cannot form homodimers but forms stable heterodimers with the C/EBP family of activating transcription factors. Although initially characterized as a dominant negative inhibitor of C/EBPs in the activation of gene transcription, CHOP-C/EBP can activate certain target genes. Here we show that CHOP interacts with members of the immediate-early response, growth-promoting AP-1 transcription factor family, JunD, c-Jun, and c-Fos, to activate promoter elements in the somatostatin, JunD, and collagenase genes. The leucine zipper dimerization domain is required for interactions with AP-1 proteins and transactivation of transcription. Analyses by electrophoretic mobility shift assays and by an in vivo mammalian two-hybrid system for protein-protein interactions indicate that CHOP interacts with AP-1 proteins inside cells and suggest that it is recruited to the AP-1 complex by a tethering mechanism rather than by direct binding of DNA. Thus, CHOP not only is a negative or a positive regulator of C/EBP target genes but also, when tethered to AP-1 factors, can activate AP-1 target genes. These findings establish the existence of a new mechanism by which CHOP regulates gene expression when cells are exposed to cellular stress.  (+info)