Identification of a cysteine residue in the active site of nitroalkane oxidase by modification with N-ethylmaleimide. (49/1513)

The flavoprotein nitroalkane oxidase catalyzes the oxidative denitrification of primary or secondary nitroalkanes to the corresponding aldehydes or ketones with production of hydrogen peroxide and nitrite. The enzyme is irreversibly inactivated by treatment with N-ethylmaleimide at pH 7. The inactivation is time-dependent and shows first-order kinetics for three half-lives. The second-order rate constant for inactivation is 3.4 +/- 0.06 m(-)(1) min(-)(1). The competitive inhibitor valerate protects the enzyme from inactivation, indicating an active site-directed modification. Comparison of tryptic maps of enzyme treated with N-[ethyl-1-(14)C]maleimide in the absence and presence of valerate shows a single radioactive peptide differentially labeled in the unprotected enzyme. The sequence of this peptide was determined to be LLNEVMCYPLFDGGNIGLR using Edman degradation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The cysteine residue was identified as the site of alkylation by ion trap mass spectrometry.  (+info)

Rapid detection and identification of Candida, Aspergillus, and Fusarium species in ocular samples using nested PCR. (50/1513)

A protocol for the rapid detection of fungal DNA in ocular samples, derived from three species, Candida albicans, Aspergillus fumigatus, and Fusarium solani, has been developed. Two novel panfungal primers complementary to 18S rRNA sequences present in all three species were designed. Panfungal PCR was followed by three nested PCRs utilizing species-specific primers. PCR sensitivity ranged from 50 to 100 fg of free DNA and between one and two C. albicans organisms. In addition, we also developed a rapid and reliable DNA extraction protocol. This protocol minimized DNA loss during extraction, whilst removing compounds from vitreous and aqueous fluids that have previously been shown to have inhibitory effects on PCR. Preliminary results obtained after testing the protocol on three patient samples support culture results and medical history. However, one patient was PCR positive but culture negative, suggesting that the sensitivity of this protocol may exceed that of traditional culture techniques. This system, therefore, constitutes an additional protocol that may significantly aid patient management in cases where fungal endophthalmitis is suspected.  (+info)

Mixed infection caused by two species of Fusarium in a human immunodeficiency virus-positive patient. (51/1513)

We report on a case of mixed infection caused by two species of Fusarium in a human immunodeficiency virus-positive patient with lymphoma who was neutropenic due to chemotherapy. The patient showed the typical signs of a disseminated fusarial infection, with Fusarium solani isolated from skin lesions and F. verticillioides isolated from blood. The report discusses how difficult it is to make an accurate diagnosis when an immunosuppressed patient is infected with more than one fungal species, especially when the species are morphologically very similar.  (+info)

Fusarium oxysporum fatty-acid subterminal hydroxylase (CYP505) is a membrane-bound eukaryotic counterpart of Bacillus megaterium cytochrome P450BM3. (52/1513)

The gene of a fatty-acid hydroxylase of the fungus Fusarium oxysporum (P450foxy) was cloned and expressed in yeast. The putative primary structure revealed the close relationship of P450foxy to the bacterial cytochrome P450BM3, a fused protein of cytochrome P450 and its reductase from Bacillus megaterium. The amino acid sequence identities of the P450 and P450 reductase domains of P450foxy were highest (40.6 and 35.3%, respectively) to the corresponding domains of P450BM3. Recombinant P450foxy expressed in yeast was catalytically and spectrally indistinguishable from the native protein, except most of the recombinant P450foxy was recovered in the soluble fraction of the yeast cells, in marked contrast to native P450foxy, which was exclusively recovered in the membrane fraction of the fungal cells. This difference implies that a post (or co)-translational mechanism functions in the fungal cells to target and bind the protein to the membrane. These results provide conclusive evidence that P450foxy is the eukaryotic counterpart of bacterial P450BM3, which evokes interest in the evolutionary aspects concerning the P450 superfamily along with its reducing systems. P450foxy was classified in the new family, CYP505.  (+info)

PCR-based identification of MAT-1 and MAT-2 in the Gibberella fujikuroi species complex. (53/1513)

All sexually fertile strains in the Gibberella fujikuroi species complex are heterothallic, with individual mating types conferred by the broadly conserved ascomycete idiomorphs MAT-1 and MAT-2. We sequenced both alleles from all eight mating populations, developed a multiplex PCR technique to distinguish these idiomorphs, and tested it with representative strains from all eight biological species and 22 additional species or phylogenetic lineages from this species complex. In most cases, either an approximately 800-bp fragment from MAT-2 or an approximately 200-bp fragment from MAT-1 is amplified. The amplified fragments cosegregate with mating type, as defined by sexual cross-fertility, in a cross of Fusarium moniliforme (Fusarium verticillioides). Neither of the primer pairs amplify fragments from Fusarium species such as Fusarium graminearum, Fusarium pseudograminearum, and Fusarium culmorum, which have, or are expected to have, Gibberella sexual stages but are thought to be relatively distant from the species in the G. fujikuroi species complex. Our results suggest that MAT allele sequences are useful indicators of phylogenetic relatedness in these and other Fusarium species.  (+info)

Substitutions of surface amino acid residues of cutinase probed by aqueous two-phase partitioning. (54/1513)

The surface properties of a protein are often crucial for recognition and interaction with other molecules. Important functional residues can be identified by mutational analysis. There is a need for rapid methods to study protein surfaces and surface changes due to mutations. Partitioning in aqueous two-phase systems has the potential to be used in this respect since protein partitioning depends on the surface properties of the protein. The influence of surface-exposed amino acid residues in protein partitioning has been studied with cutinase variants, which differed in one or several amino acid residues as a result of site-directed mutagenesis. The solvent accessibility of the mutated residues was determined with a computer program, Graphical Representation and Analysis of Surface Properties. The aqueous two-phase system was composed of dextran and a random copolymer of ethylene oxide and propylene oxide. It was shown, for the first time, to what extent surface-exposed amino acid residues influence the partition coefficient in an aqueous two-phase system. The effect on partitioning could be described only taking into account solvent accessibility and type of residue substitution. The results demonstrate that the system can be used to detect conformational changes in mutant proteins since the expected effect on partitioning due to a mutation can be calculated. The aqueous two-phase system used here does indeed provide a rapid and convenient method to study protein surfaces and slight surface changes due to mutations.  (+info)

Therapeutic surgery in failures of medical treatment for fungal keratitis. (55/1513)

Medical treatment failure necessitated surgery in nine cases of fungal keratitis. Therapeutic surgery eliminated fungal infection in seven cases, and useful vision was retained in five out of six penetrating keratoplasties. In three cases Natamycin (Pimaricin) therapy rendered fungi non-viable, but two were demonstrable by histopathology. These results suggest that antifungal treatment should be applied for as long as possible before therapeutic surgery in order to improve the final visual outcome.  (+info)

Simulation of fungal-mediated cell death by fumonisin B1 and selection of fumonisin B1-resistant (fbr) Arabidopsis mutants. (56/1513)

Fumonisin B1 (FB1), a programmed cell death-eliciting toxin produced by the necrotrophic fungal plant pathogen Fusarium moniliforme, was used to simulate pathogen infection in Arabidopsis. Plants infiltrated with 10 microM FB1 and seedlings transferred to agar media containing 1 microM FB1 develop lesions reminiscent of the hypersensitive response, including generation of reactive oxygen intermediates, deposition of phenolic compounds and callose, accumulation of phytoalexin, and expression of pathogenesis-related (PR) genes. Arabidopsis FB1-resistant (fbr) mutants were selected directly by sowing seeds on agar containing 1 microM FB1, on which wild-type seedlings fail to develop. Two mutants chosen for further analyses, fbr1 and fbr2, had altered PR gene expression in response to FB1. fbr1 and fbr2 do not exhibit differential resistance to the avirulent bacterial pathogen Pseudomonas syringae pv maculicola (ES4326) expressing the avirulence gene avrRpt2 but do display enhanced resistance to a virulent isogenic strain that lacks the avirulence gene. Our results demonstrate the utility of FB1 for high-throughput isolation of Arabidopsis defense-related mutants and suggest that pathogen-elicited programmed cell death of host cells may be an important feature of compatible plant-pathogen interactions.  (+info)