Autoinduction of 2,4-diacetylphloroglucinol biosynthesis in the biocontrol agent Pseudomonas fluorescens CHA0 and repression by the bacterial metabolites salicylate and pyoluteorin. (1/30)

The antimicrobial metabolite 2,4-diacetylphloroglucinol (2,4-DAPG) contributes to the capacity of Pseudomonas fluorescens strain CHA0 to control plant diseases caused by soilborne pathogens. A 2, 4-DAPG-negative Tn5 insertion mutant of strain CHA0 was isolated, and the nucleotide sequence of the 4-kb genomic DNA region adjacent to the Tn5 insertion site was determined. Four open reading frames were identified, two of which were homologous to phlA, the first gene of the 2,4-DAPG biosynthetic operon, and to the phlF gene encoding a pathway-specific transcriptional repressor. The Tn5 insertion was located in an open reading frame, tentatively named phlH, which is not related to known phl genes. In wild-type CHA0, 2, 4-DAPG production paralleled expression of a phlA'-'lacZ translational fusion, reaching a maximum in the late exponential growth phase. Thereafter, the compound appeared to be degraded to monoacetylphloroglucinol by the bacterium. 2,4-DAPG was identified as the active compound in extracts from culture supernatants of strain CHA0 specifically inducing phlA'-'lacZ expression about sixfold during exponential growth. Induction by exogenous 2,4-DAPG was most conspicuous in a phlA mutant, which was unable to produce 2, 4-DAPG. In a phlF mutant, 2,4-DAPG production was enhanced severalfold and phlA'-'lacZ was expressed at a level corresponding to that in the wild type with 2,4-DAPG added. The phlF mutant was insensitive to 2,4-DAPG addition. A transcriptional phlA-lacZ fusion was used to demonstrate that the repressor PhlF acts at the level of transcription. Expression of phlA'-'lacZ and 2,4-DAPG synthesis in strain CHA0 was strongly repressed by the bacterial extracellular metabolites salicylate and pyoluteorin as well as by fusaric acid, a toxin produced by the pythopathogenic fungus Fusarium. In the phlF mutant, these compounds did not affect phlA'-'lacZ expression and 2, 4-DAPG production. PhlF-mediated induction by 2,4-DAPG and repression by salicylate of phlA'-'lacZ expression was confirmed by using Escherichia coli as a heterologous host. In conclusion, our results show that autoinduction of 2,4-DAPG biosynthesis can be countered by certain bacterial (and fungal) metabolites. This mechanism, which depends on phlF function, may help P. fluorescens to produce homeostatically balanced amounts of extracellular metabolites.  (+info)

Apoptosis induced by picolinic acid-related compounds in HL-60 cells. (2/30)

We have found that niacin-related compounds, particularly picolinic acid, induced apoptosis in human leukemia cells. In this paper, we investigated whether various picolinic acid-related compounds had apoptosis-inducing activities or not. Particularly, fusaric acid, picolinaldehyde, nicotinaldehyde, 2-aminopyridine, and 3-aminopyridine also induced apoptosis in HL-60 cells. These results suggest that pyridine substituted with various groups and the consequent change of resonance structure may have an important role in the induction of apoptosis.  (+info)

Fusaric acid-producing strains of Fusarium oxysporum alter 2,4-diacetylphloroglucinol biosynthetic gene expression in Pseudomonas fluorescens CHA0 in vitro and in the rhizosphere of wheat. (3/30)

The phytotoxic pathogenicity factor fusaric acid (FA) represses the production of 2,4-diacetylphloroglucinol (DAPG), a key factor in the antimicrobial activity of the biocontrol strain Pseudomonas fluorescens CHA0. FA production by 12 Fusarium oxysporum strains varied substantially. We measured the effect of FA production on expression of the phlACBDE biosynthetic operon of strain CHA0 in culture media and in the wheat rhizosphere by using a translational phlA'-'lacZ fusion. Only FA-producing F. oxysporum strains could suppress DAPG production in strain CHA0, and the FA concentration was strongly correlated with the degree of phlA repression. The repressing effect of FA on phlA'-'lacZ expression was abolished in a mutant that lacked the DAPG pathway-specific repressor PhlF. One FA-producing strain (798) and one nonproducing strain (242) of F. oxysporum were tested for their influence on phlA expression in CHA0 in the rhizosphere of wheat in a gnotobiotic system containing a sand and clay mineral-based artificial soil. F. oxysporum strain 798 (FA(+)) repressed phlA expression in CHA0 significantly, whereas strain 242 (FA(-)) did not. In the phlF mutant CHA638, phlA expression was not altered by the presence of either F. oxysporum strain 242 or 798. phlA expression levels were seven to eight times higher in strain CHA638 than in the wild-type CHA0, indicating that PhlF limits phlA expression in the wheat rhizosphere.  (+info)

Molecular cloning and characterization of the fusaric acid-resistance gene from Pseudomonas cepacia. (4/30)

Fusaric acid-resistance genes (fus) were isolated from Pseudomonas cepacia. The nucleotides of the 5437 base pairs containing the fus genes were sequenced.  (+info)

Recent advances in the understanding of Fusarium trichothecene mycotoxicoses. (5/30)

Recent concepts in the etiology of Fusarium trichothecene mycotoxicoses have been reviewed. The effect of orally administered trichothecenes on tissue metabolism has been traced from the gastrointestinal tract to the liver and subsequently to blood. It is proposed that the hyperaminoacidemia resulting from trichothecene toxicoses contributes to the behavioral changes observed, including loss of appetite and vomiting. Studies with several species and several trichothecenes have shown that elevated brain tryptophan arising from trichothecene-induced aminoacidemia can subsequently alter regional brain serotonin concentrations. This may produce behaviors such as loss of appetite and muscle incoordination characteristic of the firing of serotonergic neurons. Support is also presented for the concept that other Fusarium metabolites such as fusaric acid may act synergistically with trichothecenes to produce these effects.  (+info)

Potential role of pathogen signaling in multitrophic plant-microbe interactions involved in disease protection. (6/30)

Multitrophic interactions mediate the ability of fungal pathogens to cause plant disease and the ability of bacterial antagonists to suppress disease. Antibiotic production by antagonists, which contributes to disease suppression, is known to be modulated by abiotic and host plant environmental conditions. Here, we demonstrate that a pathogen metabolite functions as a negative signal for bacterial antibiotic biosynthesis, which can determine the relative importance of biological control mechanisms available to antagonists and which may also influence fungus-bacterium ecological interactions. We found that production of the polyketide antibiotic 2,4-diacetylphloroglucinol (DAPG) was the primary biocontrol mechanism of Pseudomonas fluorescens strain Q2-87 against Fusarium oxysporum f. sp. radicis-lycopersici on the tomato as determined with mutational analysis. In contrast, DAPG was not important for the less-disease-suppressive strain CHA0. This was explained by differential sensitivity of the bacteria to fusaric acid, a pathogen phyto- and mycotoxin that specifically blocked DAPG biosynthesis in strain CHA0 but not in strain Q2-87. In CHA0, hydrogen cyanide, a biocide not repressed by fusaric acid, played a more important role in disease suppression.  (+info)

Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. (7/30)

Pseudomonas chlororaphis PCL1391 produces the secondary metabolite phenazine-1-carboxamide (PCN), which is an antifungal metabolite required for biocontrol activity of the strain. Identification of conditions involved in PCN production showed that some carbon sources and all amino acids tested promote PCN levels. Decreasing the pH from 7 to 6 or decreasing the growth temperature from 21 to 16 degrees C decreased PCN production dramatically. In contrast, growth at 1% oxygen as well as low magnesium concentrations increased PCN levels. Salt stress, low concentrations of ferric iron, phosphate, sulfate, and ammonium ions reduced PCN levels. Fusaric acid, a secondary metabolite produced by the soilborne Fusarium spp. fungi, also reduced PCN levels. Different nitrogen sources greatly influenced PCN levels. Analysis of autoinducer levels at conditions of high and low PCN production demonstrated that, under all tested conditions, PCN levels correlate with autoinducer levels, indicating that the regulation of PCN production by environmental factors takes place at or before autoinducer production. Moreover, the results show that autoinducer production not only is induced by a high optical density but also can be induced by certain environmental conditions. We discuss our findings in relation to the success of biocontrol in the field.  (+info)

Role of chemotaxis toward fusaric acid in colonization of hyphae of Fusarium oxysporum f. sp. radicis-lycopersici by Pseudomonas fluorescens WCS365. (8/30)

Pseudomonas fluorescens WCS365 is an excellent competitive colonizer of tomato root tips after bacterization of seed or seedlings. The strain controls tomato foot and root rot (TFRR) caused by the phytopathogenic fungus Fusarium oxysporum f. sp. radicis-lycopersici. Under biocontrol conditions, fungal hyphae were shown to be colonized by WCS365 bacteria. Because chemotaxis is required for root colonization by WCS365 cells, we studied whether chemotaxis also is required for hyphae colonization. To that end, an in vitro assay was developed to study hyphae colonization by bacteria. The results indicated that cells of the cheA mutant FAJ2060 colonize hyphae less efficiently than cells of wild-type strain WCS365, when single strains were analyzed as well as when both strains were applied together. Cells of WCS365 show a chemotactic response toward the spent growth medium of F. oxysporum f. sp. radicis-lycopersici, but those of its cheA mutant, FAJ2060, did not. Fusaric acid, a secondary metabolite secreted by Fusarium strains, appeared to be an excellent chemo-attractant. Supernatant fluids of a number of Fusarium strains secreting different levels of fusaric acid were tested as chemo-attractants. A positive correlation was found between chemo-attractant activity and fusaric acid level. No chemotactic response was observed toward the low fusaric acid-producer FO242. Nevertheless, the hyphae of FO242 still were colonized by WCS365, suggesting that other metabolites also play a role in this process. The possible function of hyphae colonization for the bacterium is discussed.  (+info)