Synthesis and activity of analogues of SB-219383: novel potent inhibitors of bacterial tyrosyl tRNA synthetase. (57/1563)

SB-219383 is a naturally occurring antibiotic, which acts by inhibition of tyrosyl tRNA synthetase. Semi-synthetic derivatives of SB-219383 were prepared with the objective of elucidating the key features required for inhibition of tyrosyl tRNA synthetase in order to improve the antibacterial activity. Some ester and amide derivatives as well as monocyclic analogues exhibited sub-nanomolar inhibitory activity against tyrosyl tRNA synthetase.  (+info)

In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. (58/1563)

Halichondrin B is a highly potent anticancer agent originally found in marine sponges. Although scarcity of the natural product has hampered efforts to develop halichondrin B as a new anticancer drug, the existence of a complete synthetic route has allowed synthesis of structurally simpler analogues that retain the remarkable potency of the parent compound. In this study, we show that two macrocyclic ketone analogues of halichondrir B, ER-076349 and ER-086526, have sub-nM growth inhibitory activities in vitro against numerous human cancer cell lines as well as marked in vivo activities at 0.1-1 mg/kg against four human xenografts: MDA-MB-435 breast cancer, COLO 205 colon cancer, LOX melanoma, and NIH: OVCAR-3 ovarian cancer. ER-076349 and ER-086526 induce G2-M cell cycle arrest and disruption of mitotic spindles, consistent with the tubulin-based antimitotic mechanism of halichondrin B. This is supported further by direct binding of the biotinylated analogue ER-040798 to tubulin and inhibition of tubulin polymerization in vitro by ER-076349 and ER-086526. Retention of the extraordinary in vitro and in vivo activity off halichondrin B in structurally simplified, fully synthetic analogues establishes the feasibility of developing halichondrin B-based agents as highly effective, novel anticancer drugs.  (+info)

Catalytic and molecular properties of the quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase from Ralstonia eutropha strain Bo. (59/1563)

The quinohemoprotein tetrahydrofurfuryl alcohol dehydrogenase (THFA-DH) from Ralstonia eutropha strain Bo was investigated for its catalytic properties. The apparent k(cat)/K(m) and K(i) values for several substrates were determined using ferricyanide as an artificial electron acceptor. The highest catalytic efficiency was obtained with n-pentanol exhibiting a k(cat)/K(m) value of 788 x 10(4) M(-1) s(-1). The enzyme showed substrate inhibition kinetics for most of the alcohols and aldehydes investigated. A stereoselective oxidation of chiral alcohols with a varying enantiomeric preference was observed. Initial rate studies using ethanol and acetaldehyde as substrates revealed that a ping-pong mechanism can be assumed for in vitro catalysis of THFA-DH. The gene encoding THFA-DH from R. eutropha strain Bo (tfaA) has been cloned and sequenced. The derived amino acid sequence showed an identity of up to 67% to the sequence of various quinoprotein and quinohemoprotein dehydrogenases. A comparison of the deduced sequence with the N-terminal amino acid sequence previously determined by Edman degradation analysis suggested the presence of a signal sequence of 27 residues. The primary structure of TfaA indicated that the protein has a tertiary structure quite similar to those of other quinoprotein dehydrogenases.  (+info)

Protective effects of bilobalide on amyloid beta-peptide 25-35-induced PC12 cell cytotoxicity. (60/1563)

AIM: To study the effect of bilobalide, a terpene extracted from the leaves of Ginkgo biloba, on beta-amyloid peptide fragment 25-35 (A beta 25-35)-induced PC12 cell cytotoxicity. METHODS: 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay were used to measure the viability of PC12 cells. Thiobarbituric acid-reactive substances were measured to determine lipid peroxidation of cells. Antioxidant enzymes in PC12 cells were detected. RESULTS: Treatment of PC12 cells with A beta 25-35 (100 mumol.L-1) for 24 h caused a great decrease in cell viability (P < 0.01 compared with control). Bilobalide 25-100 mumol.L-1 dose-dependently attenuated the cytotoxic effect of A beta 25-35. Bilobalide also inhibited A beta 25-35 (100 mumol.L-1)-induced elevation of lipid peroxidation and decline of antioxidant enzyme activities. CONCLUSION: Bilobalide protected PC12 cells from A beta 25-35-induced cytotoxicity.  (+info)

Bilobalide promotes expression of glial cell line-derived neurotrophic factor and vascular endothelial growth factor in rat astrocytes. (61/1563)

AIM: To study the effects of bilobalide on the expression of glial cell line-derived neurotrophic factor (GDNF) and vascular endothelial growth factor (VEGF) in rat astrocytes in vitro. METHODS: Semiquantification polymerase chain reaction (SQ-PCR) was used to investigate GDNF and VEGF mRNA expression in the astrocytes after bilobalide (5, 15, 50, 100 mumol.L-1) treatment. Immunohistochemistry method was used to detect GDNF and VEGF protein expression in cells treated with bilobalide 50 mumol.L-1 for 24 h. RESULTS: GDNF and VEGF mRNA increased markedly after astrocytes were treated with bilobalide 50 mumol.L-1 for 12 h. GDNF and VEGF protein were detected in the cytoplasm of astrocytes after the cells were treated with bilobalide 50 mumol.L-1 for 24 h. CONCLUSION: Bilobalide induced GDNF and VEGF expression in the cultured astrocytes.  (+info)

Effects of specific inhibition of cyclo-oxygenase-1 and cyclo-oxygenase-2 in the rat stomach with normal mucosa and after acid challenge. (62/1563)

1. Effects of the cyclo-oxygenase (COX)-1 inhibitor SC-560 and the COX-2 inhibitors rofecoxib and DFU were investigated in the normal stomach and after acid challenge. 2. In healthy rats, neither SC-560 nor rofecoxib (20 mg kg(-1) each) given alone damaged the mucosa. Co-treatment with SC-560 and rofecoxib, however, induced severe lesions comparable to indomethacin (20 mg kg(-1)) whereas co-administration of SC-560 and DFU (20 mg kg(-1) each) had no comparable ulcerogenic effect 5 h after dosing. 3. SC-560 (20 mg kg(-1)) inhibited gastric 6-keto-prostaglandin (PG) F(1alpha) by 86+/-5% and platelet thromboxane (TX) B(2) formation by 89+/-4% comparable to indomethacin (20 mg kg(-1)). Rofecoxib (20 mg kg(-1)) did not inhibit gastric and platelet eicosanoids. 4. Intragastric HCl elevated mucosal mRNA levels of COX-2 but not COX-1. Dexamethasone (2 mg kg(-1)) prevented the up-regulation of COX-2. 5. After acid challenge, SC-560 (5 and 20 mg kg(-1)) induced dose-dependent injury. Rofecoxib (20 mg kg(-1)), DFU (5 mg kg(-1)) and dexamethasone (2 mg kg(-1)) given alone were not ulcerogenic but aggravated SC-560-induced damage. DFU augmented SC-560 damage 1 but not 5 h after administration whereas rofecoxib increased injury after both treatment periods suggesting different time courses. 6. Gastric injurious effects of rofecoxib and DFU correlated with inhibition of inflammatory PGE(2). 7. The findings show that in the normal stomach lesions only develop when both COX-1 and COX-2 are inhibited. In contrast, during acid challenge inhibition of COX-1 renders the mucosa more vulnerable suggesting an important role of COX-1 in mucosal defence in the presence of a potentially noxious agent. In this function COX-1 is supported by COX-2. In the face of pending injury, however, COX-2 cannot maintain mucosal integrity when the activity of COX-1 is suppressed.  (+info)

Functional characterization of rat submaxillary gland muscarinic receptors using microphysiometry. (63/1563)

1. Muscarinic cholinoceptors (MChR) in freshly dispersed rat salivary gland (RSG) cells were characterized using microphysiometry to measure changes in acidification rates. Several non-selective and selective muscarinic antagonists were used to elucidate the nature of the subtypes mediating the response to carbachol. 2. The effects of carbachol (pEC(50) = 5.74 +/- 0.02 s.e.mean; n = 53) were highly reproducible and most antagonists acted in a surmountable, reversible fashion. The following antagonist rank order, with apparent affinity constants in parentheses, was noted: 4-DAMP (8.9)= atropine (8.9) > tolterodine (8.5) > oxybutynin (7.9) > S-secoverine (7.2) > pirenzepine (6.9) > himbacine (6.8) > AQ-RA 741 (6.6) > methoctramine (5.9). 3. These studies validate the use of primary isolated RSG cells in microphysiometry for pharmacological analysis. These data are consistent with, and extend, previous studies using alternative functional methods, which reported a lack of differential receptor pharmacology between bladder and salivary gland tissue. 4. The antagonist affinity profile significantly correlated with the profile at human recombinant muscarinic M(3) and M(5) receptors. Given a lack of antagonists that discriminate between M(3) and M(5), definitive conclusion of which subtype(s) is present within RSG cells cannot be determined.  (+info)

Improved procedure for the enantiometric synthesis of 1-hydroxy/acetoxy-2,6-diaryl-3,7-dioxabicycl. (64/1563)

Short enantiomeric syntheses of the 1-hydroxy/acetoxy-3,7-dioxabicyclo[3.3.0]octane lignans, paulownin, and (+)-phrymarin I and II, were accomplished by starting from the chiral synthon, (R)-(+)-3-hydroxybutanolide, and employing photocyclization as the key step.  (+info)