Interactions between auxin transport and the actin cytoskeleton in developmental polarity of Fucus distichus embryos in response to light and gravity. (1/33)

Land plants orient their growth relative to light and gravity through complex mechanisms that require auxin redistribution. Embryos of brown algae use similar environmental stimuli to orient their developmental polarity. These studies of the brown algae Fucus distichus examined whether auxin and auxin transport are also required during polarization in early embryos and to orient growth in already developed tissues. These embryos polarize with the gravity vector in the absence of a light cue. The auxin, indole-3-acetic acid (IAA), and auxin efflux inhibitors, such as naphthylphthalamic acid (NPA), reduced environmental polarization in response to gravity and light vectors. Young rhizoids are negatively phototropic, and NPA also inhibits rhizoid phototropism. The effect of IAA and NPA on gravity and photopolarization is maximal within 2.5 to 4.5 h after fertilization (AF). Over the first 6 h AF, auxin transport is relatively constant, suggesting that developmentally controlled sensitivity to auxin determines the narrow window during which NPA and IAA reduce environmental polarization. Actin patches were formed during the first hour AF and began to photolocalize within 3 h, coinciding with the time of NPA and IAA action. Treatment with NPA reduced the polar localization of actin patches but not patch formation. Latrunculin B prevented environmental polarization in a time frame that overlaps the formation of actin patches and IAA and NPA action. Latrunculin B also altered auxin transport. Together, these results indicate a role for auxin in the orientation of developmental polarity and suggest interactions between the actin cytoskeleton and auxin transport in F. distichus embryos.  (+info)

Formosa algae gen. nov., sp. nov., a novel member of the family Flavobacteriaceae. (2/33)

Four light-yellow-pigmented, Gram-negative, short-rod-shaped, non-motile isolates were obtained from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The isolates studied were chemo-organotrophic, alkalitolerant and mesophilic. Polar lipids were analysed and phosphatidylethanolamine was the only phospholipid identified. The predominant cellular fatty acids were 15 : 0, i15 : 0, ai15 : 0, i15 : 1 and 15 : 1(n-6). The DNA G+C contents of the four strains were 34.0-34.4 mol%. The level of DNA relatedness of the four isolates was conspecific (88-98 %), indicating that they belong to the same species. The 16S rDNA sequence of strain KMM 3553(T) was determined. Phylogenetic analysis revealed that KMM 3553(T) formed a distinct phyletic line in the phylum Bacteroidetes, class Flavobacteria in the family Flavobacteriaceae and that, phylogenetically, this strain could be placed almost equidistant from the genera Gelidibacter and Psychroserpens (16S rRNA gene sequence similarities of 94 %). On the basis of significant differences in phenotypic and chemotaxonomic characteristics, it is suggested that the isolates represent a novel species in a new genus; the name Formosa algae gen. nov., sp. nov. is proposed. The type strain is KMM 3553(T) (=CIP 107684(T)).  (+info)

Pattern formation of stationary transcellular ionic currents in Fucus. (3/33)

Stationary and nonstationary spatiotemporal pattern formations emerging from the cellular electric activity are a common feature of biological cells and tissues. The nonstationary ones are well explained in the framework of the cable model. Inversely, the formation of the widespread self-organized stationary patterns of transcellular ionic currents remains elusive, despite their importance in cell polarization, apical growth, and morphogenesis. For example, the nature of the breaking symmetry in the Fucus zygote, a model organism for the experimental investigation of embryonic pattern formation, is still an open question. Using an electrodiffusive model, we report here an unexpected property of the cellular electric activity: a phase-space domain that gives rise to stationary patterns of transcellular ionic currents at finite wavelength. The cable model cannot predict this instability. In agreement with experiments, the characteristic time is an ionic diffusive one (<2 min). The critical radius is of the same order of magnitude as the cell radius (30 microm). The generic salient features are a global positive differential conductance, a negative differential conductance for one ion, and a difference between the diffusive coefficients. Although different, this mechanism is reminiscent of Turing instability.  (+info)

The effect of Fucus vesiculosus, an edible brown seaweed, upon menstrual cycle length and hormonal status in three pre-menopausal women: a case report. (4/33)

BACKGROUND: Rates of estrogen-dependent cancers are among the highest in Western countries and lower in the East. These variations may be attributable to differences in dietary exposures such as higher seaweed consumption among Asian populations. The edible brown kelp, Fucus vesiculosus (bladderwrack), as well as other brown kelp species, lower plasma cholesterol levels. Since cholesterol is a precursor to sex hormone biosynthesis, kelp consumption may alter circulating sex hormone levels and menstrual cycling patterns. In particular, dietary kelp may be beneficial to women with or at high risk for estrogen-dependent diseases. To test this, bladderwrack was administered to three pre-menopausal women with abnormal menstrual cycling patterns and/or menstrual-related disease histories. CASE PRESENTATION: Intake of bladderwrack was associated with significant increases in menstrual cycle lengths, ranging from an increase of 5.5 to 14 days. In addition, hormone measurements ascertained for one woman revealed significant anti-estrogenic and progestagenic effects following kelp administration. Mean baseline 17beta-estradiol levels were reduced from 626 +/- 91 to 164 +/- 30 pg/ml (P = 0.04) following 700 mg/d, which decreased further to 92.5.0 +/- 3.5pg/ml (P = 0.03) with the 1.4 g/d dose. Mean baseline progesterone levels rose from 0.58 +/- 0.14 to 8.4 +/- 2.6 ng/ml with the 700 mg/d dose (P = 0.1), which increased further to 16.8 +/- 0.7 ng/ml with the 1.4 g/d dose (P = 0.002). CONCLUSIONS: These pilot data suggest that dietary bladderwrack may prolong the length of the menstrual cycle and exert anti-estrogenic effects in pre-menopausal women. Further, these studies also suggest that seaweed may be another important dietary component apart from soy that is responsible for the reduced risk of estrogen-related cancers observed in Japanese populations. However, these studies will need to be performed in well-controlled clinical trials to confirm these preliminary findings.  (+info)

Brevibacterium celere sp. nov., isolated from degraded thallus of a brown alga. (5/33)

Two whitish yellow, Gram-positive, non-motile, aerobic bacteria were isolated from enrichment culture during degradation of the thallus of the brown alga Fucus evanescens. The bacteria studied were chemo-organotrophic, mesophilic and grew well on nutrient media containing up to 15 % (w/v) NaCl. The DNA G+C content was 61 mol%. The two isolates exhibited a conspecific DNA-DNA relatedness value of 98 %, indicating that they belong to the same species. A comparative analysis of 16S rRNA gene sequences revealed that strain KMM 3637(T) formed a distinct phyletic lineage in the genus Brevibacterium (family Brevibacteriaceae, class Actinobacteria) and showed the highest sequence similarity (about 97 %) to Brevibacterium casei. DNA-DNA hybridization experiments demonstrated 45 % binding with the DNA of B. casei DSM 20657(T). Physiological and chemotaxonomic characteristics (meso-diaminopimelic acid in the peptidoglycan, major cellular fatty acids 15 : 0ai and 17 : 0ai) of the bacteria studied were consistent with the genomic and phylogenetic data. On the basis of the results of this study, a novel species, Brevibacterium celere sp. nov., is proposed. The type strain is KMM 3637(T) (=DSM 15453(T)=ATCC BAA-809(T)).  (+info)

Spatial re-organisation of cortical microtubules in vivo during polarisation and asymmetric division of Fucus zygotes. (6/33)

Fucus zygotes polarise and germinate a rhizoid before their first asymmetrical division. The role of microtubules (MTs) in orienting the first division plane has been extensively studied by immunofluorescence approaches. In the present study, the re-organisation of MT arrays during the development of Fucus zygotes and embryos was followed in vivo after microinjection of fluorescent tubulin. A dynamic cortical MT array that shows dramatic reorganization during zygote polarization was detected for the first time. Randomly distributed cortical MTs were redistributed to the presumptive rhizoid site by the time of polarisation and well before rhizoid germination. The cortical MT re-organisation occurs independently of centrosome separation and nucleation. By the time of mitosis the cortical array depolymerised to cortical foci in regions from which it also reformed following mitosis, suggesting that it is nucleated from cortical sites. We confirm previous indications from immunodetection studies that centrosomal alignment and nuclear rotation occur via MT connexions to stabilised cortical sites and that definitive alignment is post-metaphasic. Finally, we show that cortical MTs align parallel to the growth axis during rhizoid tip growth and our results suggest that they may be involved in regulating rhizoid growth by shaping the rhizoid and containing turgor pressure.  (+info)

Convergent adaptation to a marginal habitat by homoploid hybrids and polyploid ecads in the seaweed genus Fucus. (7/33)

Hybridization and polyploidy are two major sources of genetic variability that can lead to adaptation in new habitats. Most species of the brown algal genus Fucus are found along wave-swept rocky shores of the Northern Hemisphere, but some species have adapted to brackish and salt marsh habitats. Using five microsatellite loci and mtDNA RFLP, we characterize two populations of morphologically similar, muscoides-like Fucus inhabiting salt marshes in Iceland and Ireland. The Icelandic genotypes were consistent with Fucus vesiculosus x Fucus spiralis F1 hybrids with asymmetrical hybridization, whereas the Irish ones consisted primarily of polyploid F. vesiculosus.  (+info)

AUREOCHROME, a photoreceptor required for photomorphogenesis in stramenopiles. (8/33)

A blue light (BL) receptor was discovered in stramenopile algae Vaucheria frigida (Xanthophyceae) and Fucus distichus (Phaeophyceae). Two homologs were identified in Vaucheria; each has one basic region/leucine zipper (bZIP) domain and one light-oxygen-voltage (LOV)-sensing domain. We named these chromoproteins AUREOCHROMEs (AUREO1 and AUREO2). AUREO1 binds flavin mononucleotide via its LOV domain and forms a 390-nm-absorbing form, indicative of formation of a cysteinyl adduct to the C(4a) carbon of the flavin mononucleotide upon BL irradiation. The adduct decays to the ground state in approximately 5 min. Its bZIP domain binds the target sequence TGACGT. The AUREO1 target binding was strongly enhanced by BL treatment, implying that AUREO1 functions as a BL-regulated transcription factor. The function of AUREO1 as photoreceptor for BL-induced branching is elucidated through RNAi experiments. RNAi of AUREO2 unexpectedly induces sex organ primordia instead of branches, implicating AUREO2 as a subswitch to initiate development of a branch, but not a sex organ. AUREO sequences are also found in the genome of the marine diatom Thalassiosira pseudonana (Bacillariophyceae), but are not present in green plants. AUREOCHROME therefore represents a BL receptor in photosynthetic stramenopiles.  (+info)