Dual roles of sialyl Lewis X oligosaccharides in tumor metastasis and rejection by natural killer cells. (1/699)

Aberrant expression of cell surface carbohydrates such as sialyl Lewis X is associated with tumor formation and metastasis. In order to determine the roles of sialyl Lewis X in tumor metastasis, mouse melanoma B16-F1 cells were stably transfected with alpha1, 3-fucosyltransferase III to express sialyl Lewis X structures. The transfected B16-F1 cells, B16-FTIII, were separated by cell sorting into three different groups based on the expression levels of sialyl Lewis X. When these transfected cells were injected into tail veins of C57BL/6 mice, B16-FTIII.M cells expressing moderate amounts of sialyl Lewis X in poly-N-acetyllactosamines produced large numbers of lung tumor nodules. Surprisingly, B16-FTIII.H cells expressing the highest amount of sialyl Lewis X in shorter N-glycans died in lung blood vessels, producing as few lung nodules as B16-FTIII.N cells which lack sialyl Lewis X. In contrast, B16-FIII.H cells formed more tumors in beige mice and NK cell-depleted C57BL/6 mice than did B16-FTIII.M cells. B16-FTIII.H cells bound to E-selectin better than did B16-FTIII.M cells, but both cells grew at the same rate. These results indicate that excessive expression of sialyl Lewis X in tumor cells leads to rejection by NK cells rather than tumor formation facilitated by attachment to endothelial cells.  (+info)

Divergent evolution of fucosyltransferase genes from vertebrates, invertebrates, and bacteria. (2/699)

On the basis of function and sequence similarities, the vertebrate fucosyltransferases can be classified into three groups: alpha-2-, alpha-3-, and alpha-6-fucosyltransferases. Thirty new putative fucosyltransferase genes from invertebrates and bacteria and six conserved peptide motifs have been identified in DNA and protein databanks. Two of these motifs are specific of alpha-3-fucosyltransferases, one is specific of alpha-2-fucosyltransferases, another is specific of alpha-6-fucosyltransferases, and two are shared by both alpha-2- and alpha-6-fucosyltranserases. Based on these data, literature data, and the phylogenetic analysis of the conserved peptide motifs, a model for the evolution offucosyltransferase genes by successive duplications, followed by divergent evolution is proposed, with either two different ancestors, one for the alpha-2/6-fucosyltransferases and one for the alpha-3-fucosyltransferases or a single common ancestor for the two families. The expected properties of such an hypothetical ancestor suggest that the plant or insect alpha-3-fucosyltransferases using chitobiose as acceptor might be the present forms of this ancestor, since fucosyltransferases using chitobiose as acceptor are expected to be of earlier appearance in evolution than enzymes using N -acetyllactosamine. However, an example of convergent evolution of fucosyltransferase genes is suggested for the appearance of the Leaepitopes found in plants and primates.  (+info)

Molecular behavior of mutant Lewis enzymes in vivo. (3/699)

The expression of type-1 Lewis antigens on erythrocytes and in digestive organs is determined by a Lewis type alpha(1,3/1, 4)-fucosyltransferase (Lewis enzyme) encoded by the Fuc-TIII gene ( FUT3 gene; Lewis gene). We have classified the Lewis alleles in the Japanese population into four types, the wild-type allele ( Le ) and three mutated alleles, i.e., le1, which has missense mutations T59G and G508A, le2, which has T59G and T1067A, and le3, which has only T59G. Here we carried out an extensive study on the biological properties of the three mutant Lewis enzymes, the le1, le2, and le3 enzymes, using native tissues and obtained the following results. (1) In in vivo and in vitro experiments, the le1 and le2 enzymes were found to be susceptible to protease digestion probably because the one missense mutation in the catalytic domains, i.e., Gly170 to Ser in the le1 enzyme and Ile356 to Lys in the le2 enzyme, makes the three-dimensional structures of the enzymesunstable, while the le3 and wild-type Lewis enzymes wereresistant to protease digestion. (2) The le1 and le2 enzymes cannot synthesize type 1 Lewis antigens on either glycolipids or mucins. The le3 enzyme cannot synthesize Lewis-active glycolipids, which result in the Lewis antigen-negative phenotype of erythrocytes, while it can synthesize Lewis antigens on mucins in normal and cancerous colon tissues. The missense mutation, Leu20 to Arg, in the transmembrane domain reduces retention of the le3 enzyme in the Golgi membrane resulting in an apparent reduction of enzyme activity as revealed by the lack of Lewis antigen synthesis. (3) The Lewis gene dosage actually has effects in vivo on the amount of the Lewis enzyme, its activity, and finally the amounts of Lewis carbohydrate antigens. This is the first article that clearly demonstrates the gene dosage effects on the amount of the glycosyltransferase protein, its activity, and the amounts of carbohydrate products in vivo.  (+info)

Expression of functional selectin ligands on Th cells is differentially regulated by IL-12 and IL-4. (4/699)

Immune responses may be qualitatively distinct depending on whether Th1 or Th2 cells predominate at the site of Ag exposure. T cell subset-specific expression of ligands for vascular selectins may underlie the distinct patterns of recruitment of Th1 or Th2 cells to peripheral inflammatory sites. Here we examine the regulation of selectin ligand expression during murine T helper cell differentiation. Large numbers of Th1 cells interacted with E- and P-selectin under defined flow conditions, while few Th2 and no naive T cells interacted. Th1 cells also expressed more fucosyltransferase VII mRNA than naive or Th2 cells. IL-12 induced expression of P-selectin ligands on Ag-activated naive T cells, even in the presence of IL-4, and on established Th2 cells restimulated in the presence of IL-12 and IFN-gamma. In contrast, Ag stimulation alone induced only E-selectin ligand. Interestingly, restimulation of established Th2 cells in the presence of IL-12 and IFN-gamma induced expression of P-selectin ligands but not E-selectin ligands; IFN-gamma alone did not enhance expression of either selectin ligand. In summary, functional P- and E-selectin ligands are expressed on most Th1 cells, few Th2 cells, but not naive T cells. Furthermore, selectin ligand expression is regulated by the cytokine milieu during T cell differentiation. IL-12 induces P-selectin ligand, while IL-4 plays a dominant role in down-regulating E-selectin ligand.  (+info)

Molecular cloning and characterization of two zebrafish alpha(1,3)fucosyltransferase genes developmentally regulated in embryogenesis. (5/699)

Some alpha(1,3)fucosylated oligosaccharides serve as counter receptors to lectin-like adhesion proteins or are expressed with temporal precision during embryogenesis, and alpha(1, 3)fucosyltransferase is a key enzyme in the production of these oligosaccharides. Two alpha(1,3)-fucosyltransferase genes, designated zFT1 and zFT2, were cloned from zebrafish. Sequence comparisons with other genes indicated that zFT1 and zFT2 share about 30% amino acid sequence identity with human alpha(1, 3)fucosyltransferases. Although the alpha(1,3)fucosyltransferases cloned so far can be classified into three types-myeloid, Lewis, and leukocyte-by virtue of their amino acid sequences, phylogenetic analysis indicated that neither zFT1 nor zFT2 belongs to any of these categories. The expression of zFT1 or zFT2 in mammalian cells induces alpha(1,3)fucosyltransferase activity to synthesize the Lewis x structure from pyridylaminated lacto-N-neotetraose; however, lacto-N-tetraose does not serve as a substrate. Reverse transcriptase-polymerase chain reaction analysis revealed that zFT1 is transcribed during a restricted period before hatching, whereas the mRNA for zFT2 was detected only after hatching.  (+info)

The gain-of-function Chinese hamster ovary mutant LEC11B expresses one of two Chinese hamster FUT6 genes due to the loss of a negative regulatory factor. (6/699)

The LEC11 Chinese hamster ovary (CHO) gain-of-function mutant expresses an alpha(1,3)fucosyltransferase (alpha(1,3)Fuc-T) activity that generates the LeX, sialyl-LeX, and VIM-2 glycan determinants and has been extensively used for studies of E-selectin ligand specificity. In order to identify regulatory mechanisms that control alpha(1,3)Fuc-T expression in mammals, mechanisms of FUT gene expression were investigated in LEC11 cells and two new, independent mutants, LEC11A and LEC11B. Northern and ribonuclease protection analyses, using probes that span the coding region of a cloned CHO FUT gene, detected transcripts in each LEC11 mutant but not in CHO cells or other gain-of-function CHO mutants that express a different alpha(1,3)Fuc-T activity. Coding region sequence analysis and alpha(1,3)Fuc-T acceptor specificity comparisons with recombinant human Fuc-TV and Fuc-TVI showed that the cloned FUT gene is orthologous to the human FUT6 gene. Southern analyses identified two closely related FUT6 genes in the Chinese hamster, whose evolutionary relationships are discussed. The blots showed that rearrangements had occurred in LEC11A and LEC11 genomic DNA, consistent with a cis mechanism of FUT6 gene activation in these mutants. By contrast, somatic cell hybrid analyses revealed that LEC11B cells express FUT6 gene transcripts due to the loss of a trans-acting, negative regulatory factor. Sequencing of reverse transcriptase-polymerase chain reaction products identified unique 5'- and 3'-untranslated region sequences in FUT6 gene transcripts from each LEC11 mutant. Northern and Southern analyses with gene-specific probes showed that LEC11A cells express only the cgFUT6A gene (where cg is Cricetulus griseus), whereas LEC11 and LEC11B cells express only the cgFUT6B gene. In LEC11A x LEC11B hybrid cells, the cgFUT6A gene was predominantly expressed, as predicted if a trans-acting negative regulatory factor functions to suppress cgFUT6B gene expression in CHO cells. This factor is predicted to be a cell type-specific regulator of FUT6 gene expression in mammals.  (+info)

Target cell susceptibility to lysis by human natural killer cells is augmented by alpha(1,3)-galactosyltransferase and reduced by alpha(1, 2)-fucosyltransferase. (7/699)

Susceptibility of porcine endothelial cells to human natural killer (NK) cell lysis was found to reflect surface expression of ligands containing Gal alpha(1,3)Gal beta(1,4)GlcNAc [corrected], the principal antigen on porcine endothelium recognized by xenoreactive human antibodies. Genetically modifying expression of this epitope on porcine endothelium by transfection with the alpha(1,2)-fucosyltransferase gene reduced susceptibility to human NK lysis. These results indicate that surface carbohydrate remodeling profoundly affects target cell susceptibility to NK lysis, and suggest that successful transgenic strategies to limit xenograft rejection by NK cells and xenoreactive antibodies will need to incorporate carbohydrate remodeling.  (+info)

Reconstitution of functional L-selectin ligands on a cultured human endothelial cell line by cotransfection of alpha1-->3 fucosyltransferase VII and newly cloned GlcNAcbeta:6-sulfotransferase cDNA. (8/699)

Recently, we proposed sialyl 6-sulfo Lewis X as a major carbohydrate-capping group of the L-selectin ligands on high endothelial venules in human lymph nodes. In this study we succeeded in reconstituting functional L-selectin ligands on a cultured human endothelial cell line, ECV304, by transfecting the alpha1-->3fucosyltranseferase VII (Fuc-T VII) and newly cloned GlcNAcbeta:6-sulfotransferase (6-Sul-T) cDNAs. The ECV304 cells transfected with Fuc-T VII cDNA expressed conventional sialyl Lewis X detected with specific antibodies including 2H5, whereas the cells transfected with 6-Sul-T cDNA expressed sialyl 6-sulfo lactosamine as well as MECA-79-defined carbohydrate determinants, but these singly transfected cells failed to express sialyl 6-sulfo Lewis X, as detected with the antisialyl 6-sulfo Lewis X mAb G152. Sialyl 6-sulfo Lewis X appeared only on the cells that were cotransfected with both 6-Sul-T and Fuc-T VII cDNAs. Significant adhesion of L-selectin-expressing cells was seen only to the doubly transfected ECV304 cells and was inhibited by G152. No adhesion was observed to the cells transfected either with 6-Sul-T or with Fuc-T VII cDNA alone. The mRNAs of the two enzymes were expressed or were inducible upon interleukin 1 stimulation in human endothelial cells. These results indicate that a set of carbohydrate determinants synthesized by the concerted action of the two enzymes, as typically represented by the sialyl 6-sulfo Lewis X-capping group, serves as an essential component of the ligand for L-selectin and that the reagents 2H5 and MECA-79, utilized in earlier studies to detect L-selectin ligand on high endothelial venules, recognize two different aspects of the same set of synthetic products.  (+info)