Responses of the ant Lasius niger to various compounds perceived as sweet in humans: a structure-activity relationship study. (57/1136)

A behavioural study on the ant Lasius niger was performed by observing its feeding responses to 85 compounds presented in a two-choice situation (tested compound versus water control or sucrose solution). Among these compounds, only 21 were phagostimulating: six monosaccharides (D-glucose, 6-deoxy-D-glucose, L-galactose, L-fucose, D-fructose, L-sorbose), four derivatives of D-glucose (methyl alpha-D-glucoside, D-gluconolactone and 6-chloro- and 6-fluoro-deoxy-D-glucose), five disaccharides (sucrose, maltose, palatinose, turanose and isomaltose), one polyol glycoside (maltitol), three trisaccharides (melezitose, raffinose and maltotriose) and two polyols (sorbitol and L-iditol). None of the 16 non-carbohydrate non-polyol compounds tested, although perceived as sweet in humans, was found to be active in ants. The molar order of effectiveness of the major naturally occuring compounds (melezitose > sucrose = raffinose > D-glucose > D-fructose = maltose = sorbitol) is basically different from the molar order of their sweetness potency in humans (sucrose > D-fructose > melezitose > maltose > D-glucose = raffinose = sorbitol). On a molar basis melezitose is in L. niger about twice as effective as sucrose or raffinose, while D-glucose and D-fructose are three and four times less effective, respectively, than sucrose or raffinose. From a structure-activity relationship study it was inferred that the active monosaccharides and polyols should interact with the ant receptor through only one type of receptor, through the same binding pocket and the same binding residues, via a six-point interaction. The high effectiveness of melezitose in L. niger mirrors the feeding habits of these ants, which attend homopterans and are heavy feeders on their honeydew, which is very rich in this carbohydrate.  (+info)

Partial characterization of the N-linked oligosaccharide structures on P-selectin glycoprotein ligand-1 (PSGL-1). (58/1136)

PSGL-1, a specific ligand for P-, E- and L-selectin, was isolated from in vivo [3H]-glucosamine labeled HL-60 cells by a combination of wheat germ agglutinin-agarose and P- or E-selectin-agarose chromatography. N-linked oligosaccharides were released from the purified, denatured ligand molecule by peptide: N-glycosidase F treatment and, following separation by Sephacryl S-200 chromatography, partially characterized using lectin, ion-exchange and size-exclusion chromatography in combination with glycosidase digestions. The data obtained suggest that the N-glycans on PSGL-1 are predominantly core-fucosylated, multiantennary complex type structures with extended, poly-N-acetyllactosamine containing outer chains. A portion of the outer chains appears to be substituted with fucose indicating that the N-glycans, in addition to the O-glycans on PSGL-1, may be involved in selectin binding.  (+info)

Increased alpha3-fucosylation of alpha(1)-acid glycoprotein in patients with congenital disorder of glycosylation type IA (CDG-Ia). (59/1136)

Increased fucosylation of the type (sialyl) Lewis(x) was detected on the acute-phase plasma protein alpha(1)-acid glycoprotein (AGP) in patients with the congenital disorder of glycosylation type IA. This is remarkable, because in these patients the biosynthesis of guanosine 5'-diphosphate (GDP)-D-mannose is strongly decreased, and GDP-D-mannose is the direct precursor for GDP-L-fucose, the substrate for fucosyltransferases. The concomitantly occurring increased branching of the glycans of AGP and the increased fucosyltransferase activity in plasma suggest that a chronic hepatic inflammatory reaction has induced the increase in fucosylation.  (+info)

Analysis of Asn-linked glycans from vegetable foodstuffs: widespread occurrence of Lewis a, core alpha1,3-linked fucose and xylose substitutions. (60/1136)

The N-glycans from 27 "plant" foodstuffs, including one from a gymnospermic plant and one from a fungus, were prepared by a new procedure and examined by means of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS). For several samples, glycan structures were additionally investigated by size-fractionation and reverse-phase high-performance liquid chromatography in conjunction with exoglycosidase digests and finally also (1)H-nuclear magnetic resonance spectroscopy. The glycans found ranged from the typical vacuolar "horseradish peroxidase" type and oligomannose to complex Le(a)-carrying structures. Though the common mushroom exclusively contained N-glycans of the oligomannosidic type, all plant foods contained mixtures of the above-mentioned types. Apple, asparagus, avocado, banana, carrot, celery, hazelnut, kiwi, onion, orange, pear, pignoli, strawberry, and walnut were particularly rich in Le(a)-carrying N-glycans. Although traces of Le(a)-containing structures were also present in almond, pistachio, potato, and tomato, no such glycans could be found in cauliflower. Coconut exhibited almost exclusively N-glycans containing only xylose but no fucose. Oligomannosidic N-glycans dominated in buckwheat and especially in the legume seeds mung bean, pea, peanut, and soybean. Papaya presented a unique set of hybrid type structures partially containing the Le(a) determinant. These results are not only compatible with the hypothesis that the carbohydrate structures are another potential source of immunological cross-reaction between different plant allergens, but they also demonstrate that the Le(a)-type structure is very widespread among plants.  (+info)

Characterization of a fucose-binding protein from bull sperm and seminal plasma that may be responsible for formation of the oviductal sperm reservoir. (61/1136)

Oviductal sperm reservoirs have been found in cattle, mice, hamsters, pigs, and horses. In cattle (Bos taurus), the reservoir is evidently formed when sperm bind to fucosylated ligands resembling Le(a) trisaccharide on the surface of oviductal epithelium. The aim of this study was to characterize the fucose-binding protein on bull sperm. Fresh ejaculated sperm were extracted with 0.5 M KCl in Hepes-balanced salts. Extracts were subjected to affinity chromatography using immobilized Le(a) trisaccharide (alpha-L-Fuc[1,4]-beta-D-Gal[1,3]-D-GlcNAc). Two-dimensional PAGE of the affinity chromatography eluates revealed a prominent protein of approximately 16.5 kDa and a pI of 5.8. This protein inhibited binding of sperm to oviductal explants. A similar analysis of proteins extracted from capacitated sperm (which do not bind to oviductal epithelium) showed a reduction in the amount of the 16.5-kDa protein. When examined by epifluorescence microscopy, live uncapacitated sperm labeled over the acrosome with a fucose-BSA-fluorescein isothiocyanate (FITC) conjugate, while capacitated sperm did not. When capacitated sperm were treated with 16.5-kDa protein, labeling with fucose-BSA-FITC was partially restored. The comparative ease with which the protein was removed from sperm and its apparent reassociation with sperm suggested that it could be a peripheral protein derived from epididymal or accessory gland fluids. Blots of SDS-PAGE gels of seminal plasma proteins revealed the presence of a Le(a)-binding protein with an apparent mass of 16.5 kDA: Amino acid sequencing of two tryptic fragments of the protein purified from sperm extracts identified it as PDC-109 (BSP-A1/A2), a product of the seminal vesicles.  (+info)

Identification of core alpha 1,3-fucosylated glycans and cloning of the requisite fucosyltransferase cDNA from Drosophila melanogaster. Potential basis of the neural anti-horseadish peroxidase epitope. (62/1136)

For many years, polyclonal antibodies raised against the plant glycoprotein horseradish peroxidase have been used to specifically stain the neural and male reproductive tissue of Drosophila melanogaster. This epitope is considered to be of carbohydrate origin, but no glycan structure from Drosophila has yet been isolated that could account for this cross-reactivity. Here we report that N-glycan core alpha1,3-linked fucose is, as judged by preabsorption experiments, indispensable for recognition of Drosophila embryonic nervous system by anti-horseradish peroxidase antibody. Further, we describe the identification by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry and high performance liquid chromatography of two Drosophila N-glycans that, as already detected in other insects, carry both alpha1,3- and alpha1,6-linked fucose residues on the proximal core GlcNAc. Moreover, we have isolated three cDNAs encoding alpha1,3-fucosyltransferase homologues from Drosophila. One of the cDNAs, when transformed into Pichia pastoris, was found to direct expression of core alpha1,3-fucosyltransferase activity. This recombinant enzyme preferred as substrate a biantennary core alpha1,6-fucosylated N-glycan carrying two non-reducing N-acetylglucosamine residues (GnGnF6; Km 11 microm) over the same structure lacking a core fucose residue (GnGn; Km 46 microm). The Drosophila core alpha1,3-fucosyltransferase enzyme was also shown to be able to fucosylate N-glycan structures of human transferrin in vitro, this modification correlating with the acquisition of binding to anti-horseradish peroxidase antibody.  (+info)

Ligands of macrophage scavenger receptor induce cytokine expression via differential modulation of protein kinase signaling pathways. (63/1136)

Our previous works demonstrated that ligands of macrophage scavenger receptor (MSR) induce protein kinases (PKs) including protein-tyrosine kinase (PTK) and up-regulate urokinase-type plasminogen activator expression (Hsu, H. Y., Hajjar, D. P., Khan, K. M., and Falcone, D. J. (1998) J. Biol. Chem. 273, 1240--1246). To continue to investigate MSR ligand-mediated signal transductions, we focus on ligands, oxidized low density lipoprotein (OxLDL), and fucoidan induction of the cytokines tumor necrosis factor-alpha (TNF) and interleukin 1 beta (IL-1). In brief, in murine macrophages J774A.1, OxLDL and fucoidan up-regulate TNF production; additionally, fucoidan but not OxLDL induces IL-1 secretion, prointerleukin 1 (proIL-1, precursor of IL-1) protein, and proIL-1 message. Simultaneously, fucoidan stimulates activity of interleukin 1-converting enzyme. We further investigate the molecular mechanism by which ligand binding-induced PK-mediated mitogen-activated protein kinase (MAPK) in regulation of expression of proIL-1 and IL-1. Specifically, fucoidan stimulates activity of p21-activated kinase (PAK) and of the MAPKs extracellular signal-regulated kinase (ERK), c-Jun NH(2)-terminal kinase (JNK), and p38. Combined with PK inhibitors and genetic mutants of Rac1 and JNK in PK activity assays, Western blotting analyses, and IL-1 enzyme-linked immunosorbent assay, the role of individual PKs in the regulation of proIL-1/IL-1 was extensively dissected. Moreover, tyrosine phosphorylation of pp60Src as well as association between pp60Src and Hsp90 play important roles in fucoidan-induced proIL-1 expression. We are the first to establish two fucoidan-mediated signaling pathways: PTK(Src)/Rac1/PAK/JNK and PTK(Src)/Rac1/PAK/p38, but not PTK/phospholipase C-gamma 1/PKC/MEK1/ERK, playing critical roles in proIL-1/IL-1 regulation. Our current results indicate and suggest a model for MSR ligands differentially modulating specific PK signal transduction pathways, which regulate atherogenesis-related inflammatory cytokines TNF and IL-1.  (+info)

A new type of carbohydrate-protein linkage in a glycopeptide from normal human urine. (64/1136)

A glycopeptide, 3-O-beta-D-glucopyranosyl-alpha-L-fucopyranosyl-L-threonine, has been isolated from normal human urine. The glycopeptide was isolated by gel chromatography, preparative zone electrophoresis, paper chromatography, and high voltage electrophoresis. The average yield of the glycopeptide was in the range of 0.2 to 0.3 mg/liter of urine. Sugar analysis and amino acid analysis gave equimolar amounts of glucose, fucose, and threonine. Linkages and sequential order were established by methylation analysis of the glycopeptide after degradation of the amino acid residue with ninhydrin. The permethylated product was analyzed on gas liquid chromatography and mass spectrometry. Anomeric configuration was deduced from optical rotation.  (+info)