Processing pathway deduced from the structures of N-glycans in Carica papaya. (33/1136)

A processing The processing pathway of N-glycans in Carica papaya was deduced from the structures of N-glycans. The N-glycans were liberated by hydrazinolysis followed by N-acetylation. Their reducing-end sugar residues were tagged with 2-aminopyridine and the pyridylamino (PA-) sugar chains thus obtained were purified by HPLC. Eleven PA-sugar chains were found, and their structures were analyzed by two-dimensional sugar mapping combined with partial acid hydrolysis and exoglycosidase digestion. The structures of the N-glycans were of the highmannose types with xylose and fucose; however, among them two new N-glycans, Manalpha1-6(Manalpha1-3)Manalpha1-6(Xylbeta1-2)+ ++Manbeta1-4GlcNAcbeta1- 4(Fucalpha1-3)GlcNAc and Manalpha1-3Manalpha1-6(Xylbeta1-2)Manbeta1-4G lcNAcbeta1-4(Fucalpha1-3 )GlcNAc, were found. Judging from these structures together with Manalpha1-6(Manalpha1-3)Manalpha1-6(Manalpha1-3) (Xylbeta1-2)Manbeta1- 4GlcNAcbeta1-4(Fucalpha1-3)GlcNAc reported previously [Shimazaki, A., Makino, Y., Omichi, K., Odani, S., and Hase, S. (1999) J. Biochem. 125, 560- 565], a processing pathway for N-glycans in C. papaya is inferred in which the activity of Golgi alpha-mannosidase II is incomplete.  (+info)

Structural characterization of the O-antigenic polysaccharide of the lipopolysaccharide from Rhizobium etli strain CE3. A unique O-acetylated glycan of discrete size, containing 3-O-methyl-6-deoxy-L-talose and 2,3,4-tri-O-,methyl-l fucose. (34/1136)

The O-antigenic polysaccharide of the Rhizobium etli CE3 lipopolysaccharide (LPS) was structurally characterized using chemical degradations (Smith degradation and beta-elimination of uronosyl residues) in combination with alkylation analysis, electrospray, and matrix-assisted laser desorption ionization-time of flight mass spectrometry, tandem mass spectrometry, and (1)H COSY and TOCSY nuclear magnetic resonance spectroscopy analyses of the native polysaccharide and the derived oligosaccharides. The polysaccharide was found to be a unique, relatively low molecular weight glycan having a fairly discrete size, with surprisingly little variation in the number of repeating units (degree of polymerization = 5). The polysaccharide is O-acetylated and contains a variety of O-methylated glycosyl residues, rendering the native glycan somewhat hydrophobic. The molecular mass of the major de-O-acetylated species, including the reducing end 3-deoxy-d-manno-2-octulosonic acid (Kdo) residue, is 3330 Da. The polysaccharide is comprised of a trisaccharide repeating unit having the structure -->4)-alpha-d-GlcpA-(1-->4)-[alpha-3-O-Me-6-deoxy-Talp-(1--> 3)]-alpha -l-Fucp-(1-->. The nonreducing end of the glycan is terminated with the capping sequence alpha-2,3, 4-tri-O-Me-Fucp-(1-->4)-alpha-d-GlcpA-(1-->, and the reducing end of the molecule consists of the non-repeating sequence -->3)-alpha-l-Fucp-(1-->3)-beta-d-Manp-(1-->3)-beta-QuiNA cp-(1-->4)-a lpha-Kdop-(2-->, where QuiNAc is N-acetylquinovosamine (2-N-acetamido-2,6-dideoxyglucose). The reducing end Kdo residue links the O-chain polysaccharide to the core region oligosaccharide, resulting in a unique location for a Kdo residue in LPS, removed four residues distally from the lipid A moiety. Structural heterogeneity in the O-chain arises mainly from the O-acetyl and O-methyl substitution. Methylation analysis using trideuteriomethyl iodide indicates that a portion of the 2,3,4-tri-O-methylfucosyl capping residues, typically 15%, are replaced with 2-O-methyl- and/or 2,3-di-O-methylfucosyl residues. In addition, approximately 25% of the 3,4-linked branching fucosyl residues and 10% of the 3-linked fucosyl residues are 2-O-methylated. A majority of the glucuronosyl residues are methyl-esterified at C-6. These unique structural features may be significant in the infection process.  (+info)

Glycotargeting: influence of the sugar moiety on both the uptake and the intracellular trafficking of nucleic acid carried by glycosylated polymers. (35/1136)

Nucleic acids (plasmids as well as oligonucleotides) used to specifically express or modulate the expression of a gene, must reach the cytosol and/or the nucleus. Several systems have been developed to increase their uptake and their efficiency. Glycosylated polylysines have been shown to specifically help nucleic acids to be taken up in cells expressing a given cell surface membrane lectin. However, it appeared that the efficiency of the imported nucleic acid was not directly related to the extent of the uptake. Indeed, some glycosylated polylysines bearing sugar moities which are poor ligands of the cell surface lectins of a given cell were found to be more efficient than those bearing better sugar ligands. The interpretation of this paradoxal result is discussed with regards to the nature of the compartment allowing the nucleic acid to cross the membrane and to be delivered in the cytosol on the one hand, and to the presence of intracellular lectins on the other hand.  (+info)

Positive selection of mutants with deletions of the gal-chl region of the Salmonella chromosome as a screening procedure for mutagens that cause deletions. (36/1136)

We have developed a convenient and specific positive selection for long deletions through the gal region of the chromosomes of Salmonella typhimurium and Escherichia coli. Through simultaneous selection for mutations in the two closely linked genes, gal and chlA, a variety of deletions of varying length, some extending through as much as 1 min of the chromosome, could be readily obtained. Many of these deletions resulted in the loss of a gene, which we named dhb, concerned with the ability of the bacterium to synthesize the iron chelating agent enterobactin. The selection was adapted for the screening of mutagens for their ability to generate long deletions in the bacterial deoxyribonucleic acid. Forty agents were screened for this capability. Nitrous acid, previously reported to be an efficient mutagen for this purpose, increased the frequency of deletion mutations 50-fold in our system. Three others, nitrogen mustard, mitomycin C, and fast neutrons, were shown to increase the frequency of long deletions between five- and eightfold. The remainder were found to be incapable of generating these deletions.  (+info)

Multiplicity, structures, and endocrine and exocrine natures of eel fucose-binding lectins. (37/1136)

Lectins, a group of proteins that bind to cell surface carbohydrates and play important roles in innate immunity, are widely used experimentally to distinguish cell types and to induce cell proliferation. Eel serum lectins have been useful as anti-H hemagglutinins and also in lectin histochemistry as fucose-binding lectins (fucolectins), but their structures have not been determined. Here we report the primary structures and the sites of synthesis of eel fucolectins. Eel serum fucolectins were separated by two-dimensional gel electrophoresis and sequenced. cDNA cloning, based on the amino acid sequence information, and Northern blot analysis indicated that 1) the fucose-binding lectins are secretory proteins and have unique structures among the lectins, exhibiting only weak similarities to frog pentraxin, horseshoe crab tachylectin-4, and fly fw protein; 2) there are at least seven closely related members; and 3) their messages are abundantly expressed in the liver and in significant levels in the gill and intestine. The lectin-producing hepatic cells were identified by immunostaining; in the gill, exocrine mucous cells were stained, suggesting that serum fucolectins derive from the liver. Using primary culture of eel hepatocytes, the message levels were shown to be increased by lipopolysaccharide, suggesting a role for fucolectins in host defense. SDS-polyacrylamide gel electrophoresis analysis showed that eel fucolectins have a SDS-resistant tetrameric structure consisting of two disulfide-linked dimers.  (+info)

Nod factors of Rhizobium leguminosarum bv. viciae and their fucosylated derivatives stimulate a nod factor cleaving activity in pea roots and are hydrolyzed in vitro by plant chitinases at different rates. (38/1136)

Nod factors (NFs) are rhizobial lipo-chitooligosaccharide signals that trigger root nodule development in legumes. Modifications of NF structures influence their biological activity and affect their degradation by plant chitinases. Nodulation of certain pea cultivars by Rhizobium leguminosarum bv. viciae requires modification of NFs at the reducing end by either an O-acetyl or a fucosyl group. Fucosylated NFs were produced by an in vitro reaction with NodZ fucosyltransferase and purified. Their biological activity on pea was tested by measuring their capacity to stimulate the activity of a hydrolase that cleaves NFs. Nonmodified and fucosylated NFs displayed this activity at nano- to picomolar concentrations, while a sulfated NF from Sinorhizobium meliloti was inactive. In an additional series of experiments, the stability of non-modified and fucosylated NFs in the presence of purified tobacco chitinases was compared. The presence of the fucosyl group affected the degradation rates and the accessibility of specific cleavage sites on the chitooligosaccharide backbone. These results suggest that the fucosyl group in NFs also weakens the interaction of NFs with certain chitinases or chitinase-related proteins in pea roots.  (+info)

Enhancement of glutamate release by L-fucose changes effects of glutamate receptor antagonists on long-term potentiation in the rat hippocampus. (39/1136)

In previous studies L-fucose has been shown to facilitate long-term memory formation and to enhance and prolong long-term potentiation (LTP). To search for possible presynaptic or postsynaptic mechanisms that are affected by L-fucose, we examined the effect of L-fucose on (1) inhibition of LTP induction via glutamate receptors by antagonists, (2) paired-pulse facilitation, and (3) presynaptic transmitter release. Coapplication of 0.2 mM L-fucose with the competitive N-methyl-D-aspartate (NMDA) receptor antagonist, D-2-amino-5-phosphonovalerate (AP5), or coapplication of 0.2 mM L-fucose in the presence of an inhibitor for class I/II metabotropic glutamate receptors, (S)-alpha-methyl-4-carboxyphenylglycine (MCPG), reversed LTP blockade in the CA1-region of hippocampal slices. In contrast, L-fucose had no effect on the LTP blockade by the noncompetitive NMDA ion-channel blocker (5R,10S)-(+)-5-Methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK-801). Paired-pulse facilitation, which is a primarily presynaptic phenomenon of short-term plasticity, was decreased in the presence of 0.2 mM L-fucose. Furthermore, L-fucose enhanced the K(+)-stimulated release of [(3)H]-D-aspartate from preloaded hippocampal slices in a concentration-dependent manner. These observations demonstrate an influence of L-fucose on transmitter release that in turn can increase transmitter availability at postsynaptic glutamate receptors. This effect of L-fucose may contribute to the LTP facilitation seen in vitro and in vivo as well as to improvement in memory formation.  (+info)

YM-40461, a potent surfactant secretagogue, improves mucociliary clearance in SO2-exposed guinea pigs. (40/1136)

The effects of the new pulmonary surfactant secretagogue YM-40461, 1-(2-dimethylaminoethyl)-1-(3,4,5-trimethoxyphenyl) urea, on tracheal mucociliary transport (MCT) were assessed using guinea pigs with acute bronchitis. Acute bronchitis was induced by SO2 gas exposure (400 ppm for 3 h). MCT velocity was measured by means of the dye gelatin technique. YM-40461 at doses of 1-10 mg/kg, p.o. induced recovery of MCT function, with an ED50 value of 2.4 mg/kg. Maximal recovery (78.0+/-12.5%) was observed 2 h in the animals treated with 10 mg/kg of YM-40461. Ambroxol and bromhexine showed less effect on the MCT dysfunction than YM-40461. An artificial surfactant (Surfacten) also aided recovery. YM-40461 at a dose of 10 mg/kg, p.o. significantly improved surfactant production without affecting mucus secretion. These results show that YM-40461 ameliorates MCT dysfunction caused by SO2 exposure by activation of pulmonary surfactant secretion.  (+info)