Mitochondrial involvement in Parkinson's disease, Huntington's disease, hereditary spastic paraplegia and Friedreich's ataxia. (1/351)

Respiratory chain dysfunction has been identified in several neurodegenerative disorders. In Friedreich's ataxia (FA) and Huntington's disease (HD), where the respective mutations are in nuclear genes encoding non-respiratory chain mitochondrial proteins, the defects in oxidative phosphorylation are clearly secondary. In Parkinson's disease (PD) the situation is less clear, with some evidence for a primary role of mitochondrial DNA in at least a proportion of patients. The pattern of the respiratory chain defect may provide some clue to its cause; in PD there appears to be a selective complex I deficiency; in HD and FA the deficiencies are most severe in complex II/III with a less severe defect in complex IV. Aconitase activity in HD and FA is severely decreased in brain and muscle, respectively, but appears to be normal in PD brain. Free radical generation is thought to be of importance in both HD and FA, via excitotoxicity in HD and abnormal iron handling in FA. The oxidative damage observed in PD may be secondary to the mitochondrial defect. Whatever the cause(s) and sequence of events, respiratory chain deficiencies appear to play an important role in the pathogenesis of neurodegeneration. The mitochondrial abnormalities induced may converge on the function of the mitochondrion in apoptosis. This mode of cell death is thought to play an important role in neurodegenerative diseases and it is tempting to speculate that the observed mitochondrial defects in PD, HD and FA result directly in apoptotic cell death, or in the lowering of a cell's threshold to undergo apoptosis. Clarifying the role of mitochondria in pathogenesis may provide opportunities for the development of treatments designed to reverse or prevent neurodegeneration.  (+info)

Linkage disequilibrium and haplotype analysis in German Friedreich ataxia families. (2/351)

The main mutation causing Friedreich ataxia (FRDA) is the expansion of a GAA repeat localized within the intron between exon 1 and exon 2 of the gene X25. This expansion has been observed in 98% of FRDA chromosomes. To analyze frequencies of markers tightly linked to the Friedreich ataxia gene and to investigate wheter a limited number of ancestral chromosomes are shared by German FRDA families, a detailed analysis employing nine polymorphic markers was performed. We found strong linkage disequilibria and association of FRDA expansions with a few haplotypes. FRDA haplotypes differ significantly from control haplotypes. Our results confirm that GAA repeat expansions in intron 1 of the frataxin gene are limited to a few chromosomes and indicate an obvious founder effect in German patients. Based on these analyses, we estimate a minimum age of the mutation of 107 generations.  (+info)

Sticky DNA: self-association properties of long GAA.TTC repeats in R.R.Y triplex structures from Friedreich's ataxia. (3/351)

A novel DNA structure, sticky DNA, is described for lengths of (GAA.TTC)n found in intron 1 of the frataxin gene of Friedreich's ataxia patients. Sticky DNA is formed by the association of two purine.purine.pyrimidine (R.R.Y) triplexes in negatively supercoiled plasmids at neutral pH. An excellent correlation was found between the lengths of (GAA.TTC) (> 59 repeats): first, in FRDA patients, second, required to inhibit transcription in vivo and in vitro, and third, required to adopt the sticky conformation. Fourth, (GAAGGA.TCCTTC)65, also found in intron 1, does not form sticky DNA, inhibit transcription, or associate with the disease. Hence, R.R.Y triplexes and/or sticky DNA may be involved in the etiology of FRDA.  (+info)

Mitochondrial intermediate peptidase and the yeast frataxin homolog together maintain mitochondrial iron homeostasis in Saccharomyces cerevisiae. (4/351)

Friedreich's ataxia (FRDA) is a neurodegenerative disease typically caused by a deficiency of frataxin, a mitochondrial protein of unknown function. In Saccharomyces cerevisiae, lack of the yeast frataxin homolog ( YFH1 gene, Yfh1p polypeptide) results in mitochondrial iron accumulation, suggesting that frataxin is required for mitochondrial iron homeostasis and that FRDA results from oxidative damage secondary to mitochondrial iron overload. This hypothesis implies that the effects of frataxin deficiency could be influenced by other proteins involved in mitochondrial iron usage. We show that Yfh1p interacts functionally with yeast mitochondrial intermediate peptidase ( OCT1 gene, YMIP polypeptide), a metalloprotease required for maturation of ferrochelatase and other iron-utilizing proteins. YMIP is activated by ferrous iron in vitro and loss of YMIP activity leads to mitochondrial iron depletion, suggesting that YMIP is part of a feedback loop in which iron stimulates maturation of YMIP substrates and this in turn promotes mitochondrial iron uptake. Accordingly, YMIP is active and promotes mitochondrial iron accumulation in a mutant lacking Yfh1p ( yfh1 [Delta]), while genetic inactivation of YMIP in this mutant ( yfh1 [Delta] oct1 [Delta]) leads to a 2-fold reduction in mitochondrial iron levels. Moreover, overexpression of Yfh1p restores mitochondrial iron homeostasis and YMIP activity in a conditional oct1 ts mutant, but does not affect iron levels in a mutant completely lacking YMIP ( oct1 [Delta]). Thus, we propose that Yfh1p maintains mitochondrial iron homeostasis both directly, by promoting iron export, and indirectly, by regulating iron levels and therefore YMIP activity, which promotes mitochondrial iron uptake. This suggests that human MIP may contribute to the functional effects of frataxin deficiency and the clinical manifestations of FRDA.  (+info)

Hypertrophic cardiomyopathy in Friedreich's ataxia. (5/351)

The cardiac findings in two sibs with Friedreich's ataxia are described. The clinical signs were suggestive of hypertrophic obstructive cardiomyopathy. During left heart catheterization a systolic pressure gradient across the left ventricular outflow tract could be provoked by an infusion of isoprenaline. Left ventricular angiocardiograms and echocardiograms showed gross thickening of the interventricular septum. In one patient a systolic anterior movement of the anterior leaflet of the mitral valve was seen. The importance of serial echocardiographic examination for patients with Friedreich's ataxia is emphasized.  (+info)

A family with pseudodominant Friedreich's ataxia showing marked variation of phenotype between affected siblings. (6/351)

A family with pseudodominant Friedreich's ataxia is described showing marked variation of phenotype between affected siblings. The mother of this family (III-3) developed a spastic ataxic tetraplegia with neuropathy at 34 years of age; her husband, who was unrelated, was clinically normal. Of their nine children, two (IV-2, IV-3), including one with multiple sclerosis (IV-3), developed a mild spinocerebellar degeneration in the third decade. Three in their late 20s had an asymptomatic spinocerebellar degeneration (IV-4, IV-5, IV-6) and one was confined to a wheelchair at 15 years with typical Friedreich's ataxia (IV-9). Three other siblings (IV-1, IV-7, IV-8) were clinically normal. The father proved to be heterozygous for the triplet repeat expansion at the Friedreich's ataxia locus and all clinically affected members were homozygous for alleles in the expanded size range. This family confirms that homozygote-heterozygote mating is the genetic basis for some families with apparent autosomal dominant Friedreich's ataxia.  (+info)

Yeast and human frataxin are processed to mature form in two sequential steps by the mitochondrial processing peptidase. (7/351)

Frataxin is a nuclear-encoded mitochondrial protein which is deficient in Friedreich's ataxia, a hereditary neurodegenerative disease. Yeast mutants lacking the yeast frataxin homologue (Yfh1p) show iron accumulation in mitochondria and increased sensitivity to oxidative stress, suggesting that frataxin plays a critical role in mitochondrial iron homeostasis and free radical toxicity. Both Yfh1p and frataxin are synthesized as larger precursor molecules that, upon import into mitochondria, are subject to two proteolytic cleavages, yielding an intermediate and a mature size form. A recent study found that recombinant rat mitochondrial processing peptidase (MPP) cleaves the mouse frataxin precursor to the intermediate but not the mature form (Koutnikova, H., Campuzano, V., and Koenig, M. (1998) Hum. Mol. Gen. 7, 1485-1489), suggesting that a different peptidase might be required for production of mature size frataxin. However, in the present study we show that MPP is solely responsible for maturation of yeast and human frataxin. MPP first cleaves the precursor to intermediate form and subsequently converts the intermediate to mature size protein. In this way, MPP could influence frataxin function and indirectly affect mitochondrial iron homeostasis.  (+info)

Low iron concentration and aconitase deficiency in a yeast frataxin homologue deficient strain. (8/351)

Deletion of the yeast frataxin homologue, YFH1, elicits accumulation of iron in mitochondria and mitochondrial defects. We report here that in the presence of an iron chelator in the culture medium, the concentration of iron in mitochondria is the same in wild-type and YFH1 deletant strains. Under these conditions, the activity of the respiratory complexes is restored. However, the activity of the mitochondrial aconitase, a 4Fe-4S cluster-containing protein, remains low. The frataxin family bears homology to a bacterial protein family which confers resistance to tellurium, a metal closely related to sulfur. Yfh1p might control the synthesis of iron-sulfur clusters in mitochondria.  (+info)