Seasonal dynamics of bacterioplankton community structure in a eutrophic lake as determined by 5S rRNA analysis. (25/3538)

Community structure of bacterioplankton was studied during the major growth season for phytoplankton (April to October) in the epilimnion of a temperate eutrophic lake (Lake Plusssee, northern Germany) by using comparative 5S rRNA analysis. Estimates of the relative abundances of single taxonomic groups were made on the basis of the amounts of single 5S rRNA bands obtained after high-resolution electrophoresis of RNA directly from the bacterioplankton. Full-sequence analysis of single environmental 5S rRNAs enabled the identification of single taxonomic groups of bacteria. Comparison of partial 5S rRNA sequences allowed the detection of changes of single taxa over time. Overall, the whole bacterioplankton community showed two to eight abundant (>4% of the total 5S rRNA) taxa. A distinctive seasonal succession was observed in the taxonomic structure of this pelagic community. A rather-stable community structure, with seven to eight different taxonomic units, was observed beginning in April during the spring phytoplankton bloom. A strong reduction in this diversity occurred at the beginning of the clear-water phase (early May), when only two to four abundant taxa were observed, with one taxon dominating (up to 72% of the total 5S rRNA). The community structure during summer stagnation (June and July) was characterized by frequent changes of different dominating taxa. During late summer, a dinoflagellate bloom (Ceratium hirudinella) occurred, with Comamonas acidovorans (beta-subclass of the class Proteobacteria) becoming the dominant bacterial species (average abundance of 43% of the total 5S rRNA). Finally, the seasonal dynamics of the community structure of bacterioplankton were compared with the abundances of other major groups of the aquatic food web, such as phyto- and zooplankton, revealing that strong grazing pressure by zooplankton can reduce microbial diversity substantially in pelagic environments.  (+info)

Phylogenetic analysis of particle-attached and free-living bacterial communities in the Columbia river, its estuary, and the adjacent coastal ocean. (26/3538)

The Columbia River estuary is a dynamic system in which estuarine turbidity maxima trap and extend the residence time of particles and particle-attached bacteria over those of the water and free-living bacteria. Particle-attached bacteria dominate bacterial activity in the estuary and are an important part of the estuarine food web. PCR-amplified 16S rRNA genes from particle-attached and free-living bacteria in the Columbia River, its estuary, and the adjacent coastal ocean were cloned, and 239 partial sequences were determined. A wide diversity was observed at the species level within at least six different bacterial phyla, including most subphyla of the class Proteobacteria. In the estuary, most particle-attached bacterial clones (75%) were related to members of the genus Cytophaga or of the alpha, gamma, or delta subclass of the class Proteobacteria. These same clones, however, were rare in or absent from either the particle-attached or the free-living bacterial communities of the river and the coastal ocean. In contrast, about half (48%) of the free-living estuarine bacterial clones were similar to clones from the river or the coastal ocean. These free-living bacteria were related to groups of cosmopolitan freshwater bacteria (beta-proteobacteria, gram-positive bacteria, and Verrucomicrobium spp.) and groups of marine organisms (gram-positive bacteria and alpha-proteobacteria [SAR11 and Rhodobacter spp.]). These results suggest that rapidly growing particle-attached bacteria develop into a uniquely adapted estuarine community and that free-living estuarine bacteria are similar to members of the river and the coastal ocean microbial communities. The high degree of diversity in the estuary is the result of the mixing of bacterial communities from the river, estuary, and coastal ocean.  (+info)

In situ detection of the Clostridium botulinum type C1 toxin gene in wetland sediments with a nested PCR assay. (27/3538)

A nested PCR was developed for detection of the Clostridium botulinum type C1 toxin gene in sediments collected from wetlands where avian botulism outbreaks had or had not occurred. The C1 toxin gene was detected in 16 of 18 sites, demonstrating both the ubiquitous distribution of C. botulinum type C in wetland sediments and the sensitivity of the detection assay.  (+info)

Multiple TGF-beta receptor related genes in sponge and ancient gene duplications before the parazoan-eumetazoan split. (28/3538)

Members of the transforming growth factor beta (TGF-beta) family mediate key events in cell growth and development. Various receptors for diverse members of the TGF-beta family have recently been isolated and sequenced. These receptors form a family (TbetaR family) with a Ser/Thr kinase domain in common. To understand the divergence pattern of the TbetaR family during animal evolution, we have conducted cloning of cDNAs encoding the TbetaR family members from Ephydatia fluviatilis, a freshwater sponge. We obtained seven cDNAs (sALK-1-sALK-7) which are closely related in structure to known family members. Including these sponge sequences, a phylogenetic tree of the family members was inferred by a maximum likelihood method. The phylogenetic tree suggests that the sponge receptors sALK-1-sALK-3, which are closely related to each other, are sponge homologs of vertebrate activin type I receptor (ActR-I). sALK-5 is likely to be a homolog of TGF-beta type II receptor. sALK-4 and sALK-6 might be ancestral precursors of type I and type II receptors, respectively, and sALK-7 is possibly an ancestral precursor of both types. The tree revealed that most, if not all, of the gene duplications that gave rise to known subtypes with distinct ligand specificities antedate the divergence of parazoans and eumetazoans, the earliest divergence of extant animal phyla.  (+info)

Metallothionein response in gills of Oreochromis mossambicus exposed to copper in fresh water. (29/3538)

Freshwater Oreochromis mossambicus (tilapia) were exposed to 3.2 micromol/l Cu(NO(3))(2) in the water for up to 80 days, and copper (Cu) and immunoreactive metallothionein (irMT) were localized in the branchial epithelium. Cu was demonstrated in mucous cells (MC), chloride cells (CC), pavement cells (PC), respiratory cells (RC), and basal layer cells (BLC) via autometallography combined with alcian blue staining for MC and Na(+)-K(+)-ATPase immunostaining for CC and, on the basis of their location in the epithelium of PC, RC, and BLC. In control fish (water with Cu concentration +info)

Geographical features of estuaries for neritid gastropods including Clithon retropictus to preserve thermostable direct hemolysin-producing Vibrio parahaemolyticus. (30/3538)

Thermostable direct hemolysin-producing strain of Vibrio parahaemolyticus was not detected from the alimentary tract of 7 neritid gastropods including Clithon retropictus at 9 estuaries of Southwest Islands in Japan in the present study. The strain has been detected from C. retropictus at 2 estuaries facing The Sea of Japan but not at 2 estuaries facing The Seto Inland Sea and The Pacific Ocean in Western Japan in our previous studies. In comparison with geographical features of the estuaries where the strain was detected and not, thick accumulation of muddy sediments at the riverbed and stagnation of brackish water at low tide seem to be essential for the strain to survive in neritid gastropods including C. retropictus.  (+info)

Caldicellulosiruptor kristjanssonii sp. nov., a cellulolytic, extremely thermophilic, anaerobic bacterium. (31/3538)

A cellulolytic anaerobic bacterium, strain I77R1BT, was isolated from a biomat sample of an Icelandic, slightly alkaline, hot spring (78 degrees C). Strain I77R1BT was rod-shaped, non-spore-forming, non-motile and stained Gram-negative at all stages of growth. It grew at 45-82 degrees C, with an optimum growth temperature around 78 degrees C. At 70 degrees C, growth occurred at pH 5.8-8.0, with an optimum near pH 7.0. At the optimum temperature and pH, with 2 g cellobiose l-1 as substrate, strain I77R1BT had a generation time of 2 h. During growth on Avicel, strain I77R1BT produced acetate, hydrogen and carbon dioxide as major fermentation products together with small amounts of lactic acid and ethanol. The strain fermented many substrates, including cellulose, xylan, starch and pectin, but did not grow with casein peptone, pyruvate, D-ribose or yeast extract and did not reduce thiosulfate to H2S. The G+C ratio of the cellular DNA was 35 mol%. Comparative 16S rDNA analysis placed strain I77R1BT among species of Caldicellulosiruptor. The closest relative was Caldicellulosiruptor lactoaceticus. Hybridization of total DNA showed 42% hybridization to C. lactoaceticus and 22% hybridization to Caldicellulosiruptor saccharolyticus. A new species, Caldicellulosiruptor kristjanssonii sp. nov. (I77R1BT) is proposed.  (+info)

Phylogeny and polyphasic taxonomy of Caulobacter species. Proposal of Maricaulis gen. nov. with Maricaulis maris (Poindexter) comb. nov. as the type species, and emended description of the genera Brevundimonas and Caulobacter. (32/3538)

The genus Caulobacter is composed of prosthecate bacteria often specialized for oligotrophic environments. The taxonomy of Caulobacter has relied primarily upon morphological criteria: a strain that visually appeared to be a member of the Caulobacter has generally been called one without challenge. A polyphasic approach, comprising 16S rDNA sequencing, profiling restriction fragments of 16S-23S rDNA interspacer regions, lipid analysis, immunological profiling and salt tolerance characterizations, was used to clarify the taxonomy of 76 strains of the genera Caulobacter. Brevundimonas, Hyphomonas and Mycoplana. The described species of the genus Caulobacter formed a paraphyletic group with Caulobacter henricii, Caulobacter fusiformis, Caulobacter vibrioides and Mycoplana segnis (Caulobacter segnis comb. nov.) belonging to Caulobacter sensu stricto. Caulobacter bacteroides (Brevundimonas bacteroides comb. nov.), C. henricii subsp. aurantiacus (Brevundimonas aurantiaca comb. nov.), Caulobacter intermedius (Brevundimonas intermedia comb. nov.), Caulobacter subvibrioides (Brevundimonas subvibrioides comb. nov.), C. subvibrioides subsp. albus (Brevundimonas alba comb. nov.), Caulobacter variabilis (Brevundimonas variabilis comb. nov.) and Mycoplana bullata belong to the genus Brevundimonas. The halophilic species Caulobacter maris and Caulobacter halobacteroides are different from these two genera and form the genus Maricaulis gen. nov. with Maricaulis maris as the type species. Caulobacter leidyia was observed to cluster with species of the genus Sphingomonas. Caulobacter crescentus is synonymous with C. vibrioides and C. halobacteroides is synonymous with Maricaulis maris as determined by these analyses and DNA-DNA hybridization. Biomarkers discerning these different genera were determined. The necessary recombinations have been proposed and a description of Maricaulis is presented.  (+info)