Sex differences in the effects of early neocortical injury on neuronal size distribution of the medial geniculate nucleus in the rat are mediated by perinatal gonadal steroids. (1/2521)

Freezing injury to the cortical plate of rats induces cerebrocortical microgyria and, in males but not females, a shift toward greater numbers of small neurons in the medial geniculate nucleus (MGN). The purpose of the current study was to examine a hormonal basis for this sex difference. Cross-sectional neuronal areas of the MGN were measured in male rats, untreated female rats and female rats treated perinatally with testosterone propionate, all of which had received either neonatal cortical freezing or sham injury. Both male and androgenized female rats with microgyria had significantly smaller MGN neurons when compared to their sham-operated counterparts, whereas untreated females with microgyria did not. These differences were also reflected in MGN neuronal size distribution: both male and androgenized female rats with microgyria had more small and fewer large neurons in their MGN in comparison to shams, while there was no difference in MGN neuronal size distribution between lesioned and sham females. These findings suggest that perinatal gonadal steroids mediate the sex difference in thalamic response to induction of microgyria in the rat cortex.  (+info)

Improved antibody detection by the use of range expansion and longer filter wavelength in a low ionic strength-protamine sulphate Auto-Analyzer system. (2/2521)

Range expansion, achieved by insertion of a variable resistance between the colorimeter and the recorder together with the use of 550 nm colorimeter filters, has resulted in markedly improved sensitivity for antibody detection, and improved sample identification, in a low ionic strength-protamine sulphate (LISPS) system. Range expansion also permits a lower concentration of red cells to be used, thus economizing on fully typed cells. Glycerol stored frozen cells were found to be only slightly less sensitive than fresh cells in this system.  (+info)

Cerebral blood flow in the monkey after focal cryogenic injury. (3/2521)

A focal cryogenic lesion was made in the left superior frontal gyrus of the anesthetized macaque brain. Cerebral blood flow (CBF) was determined by the hydrogen clearance technique before and during the 4 hours following trauma. Local CBF in tissue adjacent to the lesion increased in the first half hour after the lesion was made and then decreased during the ensuing 3 1/2 hours. Local CBF in the contralateral superior frontal gyrus, as well as total CBF and oxygen consumption, were unchanged by cryogenic trauma. The spread of vasogenic edema into uninjured tissue probably accounts for the observed decrease in local CBF. This experimental model may assist in discovering therapy to alter favorably the spatial and temporal profile of pathologic CBF changes in tissue surrounding an acute lesion of the brain.  (+info)

Preferential acid-catalyzed hydrolysis of the formamide linkage of N'-formylkynurenine in frozen solution. (4/2521)

Acid-catalyzed hydrolysis of the formamide linkage of N-acetyl-N'-formyl-L-kynurenineamide in frozen dilute hydrochloric acid solution followed first-order kinetics, yielding N-acetyl-L-kynurenineamide as the sole reaction product. The maximum rate of reaction in the frozen solution was found at around -7.5 degrees and approximated that of the reaction in liquid solution at 40 degrees. By freezing the dilute acid solution at -8 degrees the reaction was accelerated by 60 times compared with that in super-cooled liquid solution at the same temperature.  (+info)

A bioluminescence method for the mapping of local ATP concentrations within the arterial wall, with potential to assess the in vivo situation. (5/2521)

According to the anoxemia theory of atherosclerosis, an imbalance between the demand for and supply of oxygen and nutrients in the arterial wall is a key factor in atherogenesis. However, the energy metabolic state of the arterial tissue in vivo is largely unknown. We applied a bioluminescence method, metabolic imaging, to study local ATP concentrations in cryosections of normal pig and atherosclerotic and normal rabbit aorta. Some vessels were subjected to energy metabolic restrictions by incubation at different oxygen and glucose concentrations and others were rapidly frozen in liquid nitrogen to reflect the in vivo situation. Local ATP concentrations and the ATP distribution at a microscale was dependent on oxygen as well as glucose concentrations during incubation. ATP depletion was seen in the mid media of pig aorta in all incubations, but only at low oxygen concentration without glucose in the media of the thinner rabbit aorta. ATP-depleted zones were seen deep in pig media (>750 microm from the lumen) and in rabbit plaques (>300 micrometer+ from the lumen) even at high oxygen (pig 75% O2 and rabbit 21% O2) and glucose concentrations (5.6 mmol/L glucose). This observation probably illustrates an insufficient diffusion of glucose, which highlights the importance of studying the conditions for diffusion not only of oxygen but also of other metabolites in the arterial wall. In rapidly frozen vessels the medial ATP concentration was shown to be 0.6 to 0.8 micromol/g wet weight (both pig and rabbit aorta) and in pig aorta a gradient could be seen indicating higher ATP concentrations at the lumenal side. We propose that metabolic imaging, as applied to snap-frozen tissue, may be used to assess the energy metabolic situation in the arterial wall in vivo. The spatial resolution allows the detection of local variations within the arterial tree. However, steep concentration gradients (eg, near the border of the tissue) will be underestimated. The method may be extended to include determinations of glucose and lactate concentrations and will be used in parallel with an established method to assess hypoxia in the arterial wall in vivo.  (+info)

Changes in allograft bone irradiated at different temperatures. (6/2521)

Secondary sterilisation of allograft bone by gamma irradiation is common, but the conditions under which it is performed vary between tissue banks. Some do so at room temperature, others while the bone is frozen. Bone is made brittle by irradiation because of the destruction of collagen alpha chains, probably mediated by free radicals generated from water molecules. Freezing reduces the mobility of water molecules and may therefore decrease the production of free radicals. We found that bone irradiated at -78 degrees C was less brittle and had less collagen damage than when irradiated at room temperature. These findings may have implications for bone-banking.  (+info)

Rough surfaced smooth endoplasmic reticulum in rat and mouse cerebellar Purkinje cells visualized by quick-freezing techniques. (7/2521)

The in vivo structure of the smooth endoplasmic reticulum (ER) was visualized in rat and mouse cerebellar Purkinje cells by using quick-freezing techniques followed by freeze-substitution for ultrathin-sectioning or freeze-fracturing and deep-etching for replicas. High magnification electron microscopy of the ultrathin sections revealed a surprising finding that all the smooth ER are apparently rough surfaced, and heavily studded with a large number of small dense projections. In the soma the smooth ER appears to be similar to its rough counterpart, except that the projections are slightly smaller, less electron dense and less protrusive on the ER membranes than the ribosomes. The projections were short rectangles, 20 x 20 x 6 nm3 in size, covering the cytoplasmic surface of the smooth ER in a checker-board manner where closely packed. After freeze-etching and replication, they appeared to be composed of four subparticles, surrounding a central channel. Thus the projections are very similar to the foot structure (ryanodine receptor) of the sarcoplasmic reticulum. Furthermore, they were distributed exclusively in the ER compartment and were highly concentrated especially in the smooth ER. This localization of the projections coindides with the intracellular distribution of the inositol 1,4,5-trisphosphate (IP3) receptor determined by quantitative immunogold electron microscopy. These findings would suggest that the projections are tetramers of IP3 receptor molecules and could be used as a morphological marker for the smooth ER in Purkinje cells, which spreads from the soma to the axon and dendrite, up to the tips including the spines. In Purkinje cells tubular smooth ER runs freely in a serpentine fashion or are intertwined to make large membraneous tangles without forming cisternal stacks. It is highly probable that the ER cisternal stacks do not exist naturally in Purkinje cells but are formed artificially during the various procedures for chemical fixation.  (+info)

A leucine-rich repeat protein of carrot that exhibits antifreeze activity. (8/2521)

A gene encoding an antifreeze protein (AFP) was isolated from carrot (Daucus carota) using sequence information derived from the purified protein. The carrot AFP is highly similar to the polygalacturonase inhibitor protein (PGIP) family of apoplastic plant leucine-rich repeat (LRR) proteins. Expression of the AFP gene is rapidly induced by low temperatures. Furthermore, expression of the AFP gene in transgenic Arabidopsis thaliana plants leads to an accumulation of antifreeze activity. Our findings suggest that a new type of plant antifreeze protein has recently evolved from PGIPs.  (+info)