Mechanism-based cancer prevention approaches: targets, examples, and the use of transgenic mice. (1/3282)

Humans are exposed to a wide variety of carcinogenic insults, including endogenous and man-made chemicals, radiation, physical agents, and viruses. The ultimate goal of carcinogenesis research is to elucidate the processes involved in the induction of human cancer so that interventions may be developed to prevent the disease, either in the general population or in susceptible subpopulations. Progress to date in the carcinogenesis field, particularly regarding the mechanisms of chemically induced cancer, has revealed several points along the carcinogenesis pathway that may be amenable to mechanism-based prevention strategies. The purpose of this review is to examine the basic mechanisms and stages of chemical carcinogenesis, with an emphasis on ways in which preventive interventions can modify those processes. Possible ways of interfering with tumor initiation events include the following: i) modifying carcinogen activation by inhibiting enzymes responsible for that activation or by direct scavenging of DNA-reactive electrophiles and free radicals; ii) enhancing carcinogen detoxification processes by altering the activity of the detoxifying enzymes; and iii) modulating certain DNA repair processes. Possible ways of blocking the processes involved in the promotion and progression stages of carcinogenesis include the following: i) scavenging of reactive oxygen species; ii) altering the expression of genes involved in cell signaling, particularly those regulating cell proliferation, apoptosis, and differentiation; and iii) decreasing inflammation. In addition, the utility for mechanism-based cancer prevention research of new animal models that are based on the overexpression or inactivation of specific cancer-related genes is examined.  (+info)

Role of iNOS in the vasodilator responses induced by L-arginine in the middle cerebral artery from normotensive and hypertensive rats. (2/3282)

1. The substrate of nitric oxide synthase (NOS), L-arginine (L-Arg, 0.01 microM - 1 mM), induced endothelium-independent relaxations in segments of middle cerebral arteries (MCAs) from normotensive Wistar-Kyoto (WKY) and hypertensive rats (SHR) precontracted with prostaglandin F2alpha (PGF2alpha). These relaxations were higher in SHR than WKY arteries. 2. L-N(G)-nitroarginine methyl ester (L-NAME) and 2-amine-5,6-dihydro-6-methyl-4H-1,3-tiazine (AMT), unspecific and inducible NOS (iNOS) inhibitors, respectively, reduced those relaxations, specially in SHR. 3. Four- and seven-hours incubation with dexamethasone reduced the relaxations in MCAs from WKY and SHR, respectively. 4. Polymyxin B and calphostin C, protein kinase C (PKC) inhibitors, reduced the L-Arg-induced relaxation. 5. Lipopolysaccharide (LPS, 7 h incubation) unaltered and inhibited these relaxations in WKY and SHR segments, respectively. LPS antagonized the effect polymyxin B in WKY and potentiated L-Arg-induced relaxations in SHR in the presence of polymyxin B. 6. The contraction induced by PGF2alpha was greater in SHR than WKY arteries. This contraction was potentiated by dexamethasone and polymyxin B although the effect of polymyxin B was higher in SHR segments. LPS reduced that contraction and antagonized dexamethasone- and polymyxin B-induced potentiation, these effects being greater in arteries from SHR. 7. These results suggest that in MCAs: (1) the induction of iNOS participates in the L-Arg relaxation and modulates the contraction to PGF2alpha; (2) that induction is partially mediated by a PKC-dependent mechanism; and (3) the involvement of iNOS in such responses is greater in the hypertensive strain.  (+info)

Effect of acute and long-term treatment with 17-beta-estradiol on the vasomotor responses in the rat aorta. (3/3282)

1. This study sought to evaluate whether the effects of acute and long-term treatment with 17-beta-estradiol on the vasomotor responses in rat aortic rings are mediated through the same mechanism. 2. Ovariectomized rats were treated daily with either 17-beta-estradiol-3-benzoate (100 microg kg(-1)) or vehicle for 1 week. 3. The effect of long-term 17-beta-estradiol treatment on the responses to cumulative doses of phenylephrine, 5-HT, calcium, potassium and 17-beta-estradiol was determined in aortic rings. In the same rings, the effect of acute exposure to 17-beta-estradiol (5 and 10 microM) on the dose response curves for phenylephrine, 5-HT, calcium, potassium and acetylcholine were estimated. The measurements were made in rings with and without intact endothelium. The tone-related basal release of nitric oxide (NO) was measured in rings with intact endothelium. 4. Long-term 17-beta-estradiol treatment reduced the maximum developed contraction to all contracting agents studied. This effect was abolished in endothelium denuded vessels. Acute 17-beta-estradiol treatment also reduced maximal contraction. This effect, however, was independent of the endothelium. 5. Long-term 17-beta-estradiol treatment significantly increased the ability of the rings to dilate in response to acetylcholine whereas acute exposure to 17-beta-estradiol had no effect. The tone-related release of NO was significantly increased after long-term exposure to 17-beta-estradiol. 6. In conclusion, this study indicate that the acute and long-term effects of 17-beta-estradiol in the rat aorta are mediated through different mechanisms. The long-term effect is mediated through the endothelium most likely by increasing NO release. In contrast, the acute effect of 17-beta-estradiol seems to be through an effect on the vascular smooth muscle cells.  (+info)

[3H]-Mesulergine labels 5-HT7 sites in rat brain and guinea-pig ileum but not rat jejunum. (4/3282)

1. The primary aim of this investigation was to determine whether binding sites corresponding to the 5-HT7 receptor could be detected in smooth muscle of the rat jejunum. Binding studies in rat brain (whole brain minus cerebellum) and guinea-pig ileal longitudinal muscle were also undertaken in order to compare the binding characteristics of these tissues. Studies were performed using [3H]-mesulergine, as it has a high affinity for 5-HT7 receptors. 2. In the rat brain and guinea-pig ileum, pKD values for [3H]-mesulergine of 8.0 +/- 0.04 and 7.9 +/- 0.11 (n = 3) and Bmax values of 9.9 +/- 0.3 and 21.5 +/- 4.9 fmol mg(-1) protein were obtained respectively, but no binding was detected in the rat jejunum. [3H]-mesulergine binding in the rat brain and guinea-pig ileum was displaced with the agonists 5-carboxamidotryptamine (5-CT) > 5-hydroxytryptamine (5-HT) > or = 5-methoxytryptamine (5-MeOT) > sumatriptan and the antagonists risperidone > or = LSD > or = metergoline > ritanserin > > pindolol. 3. Despite the lack of [3H]-mesulergine binding in the rat jejunum, functional studies undertaken revealed a biphasic contractile response to 5-HT which was partly blocked by ondansetron (1 microM). The residual response was present in over 50% of tissues studied and was found to be inhibited by risperidone > LSD > metergoline > mesulergine = ritanserin > pindolol, but was unaffected by RS 102221 (3 microM), cinanserin (30 nM), yohimbine (0.1 microM) and GR 113808 (1 microM). In addition, the agonist order of potency was 5-CT > 5-HT > 5-MeOT > sumatriptan. 4. In conclusion, binding studies performed with [3H]-mesulergine were able to detect 5-HT7 sites in rat brain and guinea-pig ileum, but not in rat jejunum, where a functional 5-HT7-like receptor was present.  (+info)

Effects of pyrogallol, hydroquinone and duroquinone on responses to nitrergic nerve stimulation and NO in the rat anococcygeus muscle. (5/3282)

1. The hypothesis that endogenous superoxide dismutase (SOD) protects the nitrergic transmitter from inactivation by superoxide and that this explains the lack of sensitivity of the transmitter to superoxide generators was tested in the rat isolated anococcygeus muscle. 2. Responses to nitrergic nerve stimulation or to NO were not significantly affected by exogenous SOD or by the Cu/Zn SOD inhibitor diethyldithiocarbamic acid (DETCA). 3. Hydroquinone produced a concentration-dependent reduction of responses to NO with an IC50 of 27 microM, and higher concentrations reduced relaxant responses to nitrergic nerve stimulation with an IC50 of 612 microM. The effects of hydroquinone were only slightly reversed by SOD, so it does not appear to be acting as a superoxide generator. 4. Pyrogallol produced a concentration-dependent reduction in responses to NO with an IC50 value of 39 microM and this effect was reversed by SOD (100-1000 u ml(-1)). Pyrogallol did not affect responses to nitrergic nerve stimulation. Treatment with DETCA did not alter the differentiating action of pyrogallol. 5. Duroquinone produced a concentration-dependent reduction of relaxations to NO with an IC50 value of 240 microM and 100 microM slightly decreased nitrergic relaxations. After treatment with DETCA, duroquinone produced greater reductions of relaxant responses to NO and to nitrergic stimulation, the IC50 values being 8.5 microM for NO and 40 microM for nitrergic nerve stimulation: these reductions were reversed by SOD. 6. The findings do not support the hypothesis that the presence of Cu/Zn SOD explains the greater susceptibility of NO than the nitrergic transmitter to the superoxide generator pyrogallol, but suggest that it may play a role in the effects of duroquinone.  (+info)

The influence of NO synthase inhibitor and free oxygen radicals scavenger--methylene blue--on streptozotocin-induced diabetes in rats. (6/3282)

The excessive production of nitric oxide (NO) and the subsequent increase of local oxidative stress is suggested as one of the pathophysiological mechanisms of streptozotocin-induced diabetes. It was reported that the administration of NO synthase inhibitors partially attenuated the development of streptozotocin-induced diabetes and reduced hyperglycaemia. Here we have studied the influence of methylene blue, which combines the properties of NO synthase inhibitor with antioxidant effects. The experiments were performed on male rats divided into four groups: control, diabetic (single dose of 70 mg of streptozotocin/kg i.p.), methylene blue (50 mg/kg in the food) and diabetic simultaneously fed with methylene blue. After 45 days the experiments were discontinued by decapitation. Serum glycaemia, glycated haemoglobin and oxidative stress parameters (plasma malondialdehyde concentration and erythrocyte superoxide dismutase activity) were significantly higher in the diabetic group. Simultaneous methylene blue administration partially reduced glycaemia and glycated haemoglobin, but did not decrease oxidative stress. We conclude that NO synthase inhibitor methylene blue partially attenuates the development of streptozotocin-induced diabetes in male rats, but does not reduce the development of oxidative stress in the diabetic group.  (+info)

Regulation of JNK signaling by GSTp. (7/3282)

Studies of low basal Jun N-terminal kinase (JNK) activity in non-stressed cells led us to identify a JNK inhibitor that was purified and identified as glutathione S-transferase Pi (GSTp) and was characterized as a JNK-associated protein. UV irradiation or H2O2 treatment caused GSTp oligomerization and dissociation of the GSTp-JNK complex, indicating that it is the monomeric form of GSTp that elicits JNK inhibition. Addition of purified GSTp to the Jun-JNK complex caused a dose-dependent inhibition of JNK activity. Conversely, immunodepleting GSTp from protein extracts attenuated JNK inhibition. Furthermore, JNK activity was increased in the presence of specific GSTp inhibitors and a GSTp-derived peptide. Forced expression of GSTp decreased MKK4 and JNK phosphorylation which coincided with decreased JNK activity, increased c-Jun ubiquitination and decreased c-Jun-mediated transcription. Co-transfection of MEKK1 and GSTp restored MKK4 phosphorylation but did not affect GSTp inhibition of JNK activity, suggesting that the effect of GSTp on JNK is independent of the MEKK1-MKK4 module. Mouse embryo fibroblasts from GSTp-null mice exhibited a high basal level of JNK activity that could be reduced by forced expression of GSTp cDNA. In demonstrating the relationships between GSTp expression and its association with JNK, our findings provide new insight into the regulation of stress kinases.  (+info)

Salicylate inhibits LDL oxidation initiated by superoxide/nitric oxide radicals. (8/3282)

Simultaneously produced superoxide/nitric oxide radicals (O2*-/NO*) could form peroxynitrite (OONO-) which has been found to cause atherogenic, i.e. oxidative modification of LDL. Aromatic hydroxylation and nitration of the aspirin metabolite salicylate by OONO- has been reported. Therefore we tested if salicylate may be able to protect LDL from oxidation by O2*-/NO* by scavenging the OONO reactive decomposition products. When LDL was exposed to simultaneously produced O2*-/NO* using the sydnonimine SIN-1, salicylate exerted an inhibitory effect on LDL oxidation as measured by TBARS and lipid hydroperoxide formation and alteration in electrophoretic mobility of LDL. The cytotoxic effect of SIN-1 pre-oxidised LDL to endothelial cells was also diminished when salicylate was present during SIN-1 treatment of LDL. Spectrophotometric analysis revealed that salicylate was converted to dihydroxybenzoic acid (DHBA) derivatives in the presence of SIN-1. 2,3- and 2,5-DHBA were even more effective to protect LDL from oxidation by O2*-/NO*. Because O2*-/NO* can occur in vivo, the results may indicate that salicylate could act as an efficacious inhibitor of O2*-/NO* initiated atherogenic LDL modification, thus further supporting the rationale of aspirin medication regarding cardiovascular diseases.  (+info)