Clinical and molecular genetic analysis of 19 Wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1. (57/2000)

Wolfram syndrome is an autosomal recessive neurodegenerative disorder characterized by juvenile-onset diabetes mellitus and progressive optic atrophy. mtDNA deletions have been described, and a gene (WFS1) recently has been identified, on chromosome 4p16, encoding a predicted 890 amino acid transmembrane protein. Direct DNA sequencing was done to screen the entire coding region of the WFS1 gene in 30 patients from 19 British kindreds with Wolfram syndrome. DNA was also screened for structural rearrangements (deletions and duplications) and point mutations in mtDNA. No pathogenic mtDNA mutations were found in our cohort. We identified 24 mutations in the WFS1 gene: 8 nonsense mutations, 8 missense mutations, 3 in-frame deletions, 1 in-frame insertion, and 4 frameshift mutations. Of these, 23 were novel mutations, and most occurred in exon 8. The majority of patients were compound heterozygotes for two mutations, and there was no common founder mutation. The data were also analyzed for genotype-phenotype relationships. Although some interesting cases were noted, consideration of the small sample size and frequency of each mutation indicated no clear-cut correlations between any of the observed mutations and disease severity. There were no obvious mutation hot spots or clusters. Hence, molecular screening for Wolfram syndrome in affected families and for Wolfram syndrome-carrier status in subjects with psychiatric disorders or diabetes mellitus will require complete analysis of exon 8 and upstream exons.  (+info)

Saccharomyces cerevisiae pol30 (proliferating cell nuclear antigen) mutations impair replication fidelity and mismatch repair. (58/2000)

To understand the role of POL30 in mutation suppression, 11 Saccharomyces cerevisiae pol30 mutator mutants were characterized. These mutants were grouped based on their mutagenic defects. Many pol30 mutants harbor multiple mutagenic defects and were placed in more than one group. Group A mutations (pol30-52, -104, -108, and -126) caused defects in mismatch repair (MMR). These mutants exhibited mutation rates and spectra reminiscent of MMR-defective mutants and were defective in an in vivo MMR assay. The mutation rates of group A mutants were enhanced by a msh2 or a msh6 mutation, indicating that MMR deficiency is not the only mutagenic defect present. Group B mutants (pol30-45, -103, -105, -126, and -114) exhibited increased accumulation of either deletions alone or a combination of deletions and duplications (4 to 60 bp). All deletion and duplication breakpoints were flanked by 3 to 7 bp of imperfect direct repeats. Genetic analysis of one representative group B mutant, pol30-126, suggested polymerase slippage as the likely mutagenic mechanism. Group C mutants (pol30-100, -103, -105, -108, and -114) accumulated base substitutions and exhibited synergistic increases in mutation rate when combined with msh6 mutations, suggesting increased DNA polymerase misincorporation as a mutagenic defect. The synthetic lethality between a group A mutant, pol30-104, and rad52 was almost completely suppressed by the inactivation of MSH2. Moreover, pol30-104 caused a hyperrecombination phenotype that was partially suppressed by a msh2 mutation. These results suggest that pol30-104 strains accumulate DNA breaks in a MSH2-dependent manner.  (+info)

A mutation linked with Bartter's syndrome locks Kir 1.1a (ROMK1) channels in a closed state. (59/2000)

Mutations in the inward rectifying renal K(+) channel, Kir 1.1a (ROMK), have been linked with Bartter's syndrome, a familial salt-wasting nephropathy. One disease-causing mutation removes the last 60 amino acids (332-391), implicating a previously unappreciated domain, the extreme COOH terminus, as a necessary functional element. Consistent with this hypothesis, truncated channels (Kir 1.1a 331X) are nonfunctional. In the present study, the roles of this domain were systematically evaluated. When coexpressed with wild-type subunits, Kir 1.1a 331X exerted a negative effect, demonstrating that the mutant channel is synthesized and capable of oligomerization. Plasmalemma localization of Kir 1.1a 331X green fluorescent protein (GFP) fusion construct was indistinguishable from the GFP-wild-type channel, demonstrating that mutant channels are expressed on the oocyte plasma membrane in a nonconductive or locked-closed conformation. Incremental reconstruction of the COOH terminus identified amino acids 332-351 as the critical residues for restoring channel activity and uncovered the nature of the functional defect. Mutant channels that are truncated at the extreme boundary of the required domain (Kir 1.1a 351X) display marked inactivation behavior characterized by frequent occupancy in a long-lived closed state. A critical analysis of the Kir 1.1a 331X dominant negative effect suggests a molecular mechanism underlying the aberrant closed-state stabilization. Coexpression of different doses of mutant with wild-type subunits produced an intermediate dominant negative effect, whereas incorporation of a single mutant into a tetrameric concatemer conferred a complete dominant negative effect. This identifies the extreme COOH terminus as an important subunit interaction domain, controlling the efficiency of oligomerization. Collectively, these observations provide a mechanistic basis for the loss of function in one particular Bartter's-causing mutation and identify a structural element that controls open-state occupancy and determines subunit oligomerization. Based on the overlapping functions of this domain, we speculate that intersubunit interactions within the COOH terminus may regulate the energetics of channel opening.  (+info)

A novel sensitive method to detect frameshift mutations in exonic repeat sequences of cancer-related genes. (60/2000)

We have investigated frameshift mutations in exonic repeats in the ATR, BRCA1, BRCA2, PTCH, CTCF, Cx26, NuMa and TGFbetaRII genes, using human tumor samples from stomach, esophagus, breast and skin and melanoma, as well as colon cancer and endometrial cancer cell lines (125 samples in total). We developed a sensitive method to detect mutations in the repeats, using the introduction of an artificial restriction site into a repeat. The method detects a single mutant among 10(3) normal genes. Thus, an alteration in a repeated sequence can be detected unambiguously. The (A)(8) repeat of BRCA2 was found mutated in only two of five colon cell lines with microsatellite instability (MI(+)). The ATR gene has an (A)(10) repeat which was altered in two of three MI(+) stomach cancer samples and one of three MI(+) endometrial cell lines. The TGFbetaRII gene [with an (A)(10) repeat] had the maximal frequency of mutations: 10 out of 13 MI(+) samples. At least one sample from all types of cancers, except melanomas, was positive for TGFbetaRII gene mutations. No mutations were found in repeats in the BRCA1, PTCH, CTCF, NuMA and Cx26 genes in any types of tumors examined. In conclusion, our study indicates that repeats were altered only in MI(+) cells and that the mutation frequencies in the genes studied differ among tumor types. Based on these results, we discuss meaningful and meaningless alterations in exonic repeats.  (+info)

The mutational spectrum of the sonic hedgehog gene in holoprosencephaly: SHH mutations cause a significant proportion of autosomal dominant holoprosencephaly. (61/2000)

Holoprosencephaly (HPE) is a common developmental anomaly of the human forebrain and midface where the cerebral hemispheres fail to separate into distinct left and right halves. We have previously reported haploinsufficiency for Sonic Hedgehog ( SHH ) as a cause for HPE. We have now performed mutational analysis of the complete coding region and intron-exon junctions of the SHH gene in 344 unrelated affected individuals. Herein, we describe 13 additional unrelated affected individuals with SHH mutations, including nonsense and missense mutations, deletions and an insertion. These mutations occur throughout the extent of the gene. No specific genotype-phenotype association is evident based on the correlation of the type or position of the mutations. In conjunction with our previous studies, we have identified a total of 23 mutations in 344 unrelated cases of HPE. They account for 14 cases of familial HPE and nine cases of sporadic HPE. Mutations in SHH were detected in 10 of 27 (37%) families showing autosomal dominant transmission of the HPE spectrum, based on structural anomalies. Interestingly, three of the patients with an SHH mutation also had abnormalities in another gene that is expressed during forebrain development. We suggest that the interactions of multiple gene products and/or environmental elements may determine the final phenotypic outcome for a given individual and that variations among these factors may cause the wide variability in the clinical features seen in HPE.  (+info)

Relative stabilities of dinucleotide and tetranucleotide repeats in cultured mammalian cells. (62/2000)

The differences in rates of frameshift mutations between a dinucleotide repeat sequence [(CA)(17)] and a tetranucleotide repeat sequence [(GAAA)(17)] have been determined in immortalized, non-tumorigenic, mismatch repair-proficient mouse cells and in mismatch repair-defective human colorectal cancer cells. Clones with mutations were selected on the basis of restoration of activity of a bacterial neomycin resistance gene whose reading frame was disrupted by insertion of the microsatellite upstream of the translation initiation codon. This gene was introduced into the cells on a plasmid, which integrated into the genome of the host cells. Mutation rates of the tetra-nucleotide repeat were much lower than those of the dinucleotide repeat in both cell types. In addition, independent subclones of the colorectal cancer cell line were assayed by PCR for instability of endo-gen-ous tetranucleotide and dinucleotide repeat sequen-ces. In all cases, the mutation frequencies of the dinucleotide repeats were higher than those of the tetranucleotide repeats.  (+info)

Strand asymmetry of +1 frameshift mutagenesis at a homopolymeric run by DNA polymerase III holoenzyme of Escherichia coli. (63/2000)

We have recently shown that single-base frameshifts were predominant among mutations induced within the rpsL target sequence upon oriC plasmid DNA replication in vitro. We found that the occurrence of +1 frameshifts at a run of 6 residues of dA/dT could be increased proportionally by increasing the concentration of dATP present in the in vitro replication. Using single-stranded circular DNA containing either the coding sequence of the rpsL gene or its complementary sequence, the +1 frameshift mutagenesis by DNA polymerase III holoenzyme of Escherichia coli was extensively examined. A(6) --> A(7) frameshifts occurred 30 to 90 times more frequently during DNA synthesis with the noncoding sequence (dT tract) template than with the coding sequence (dA tract). Excess dATP enhanced the occurrence of +1 frameshifts during DNA synthesis with the dT tract template, but no other dNTPs showed such an effect. In the presence of 0.1 mM dATP, the A(6) --> A(7) mutagenesis with the dT tract template was not inhibited by 1.5 mM dCTP, which is complementary to the residue immediately upstream of the dT tract. These results strongly suggested that the A(6) --> A(7) frameshift mutagenesis possesses an asymmetric strand nature and that slippage errors leading to the +1 frameshift are made during chain elongation within the tract rather than by misincorporation of nucleotides opposite residues next to the tract.  (+info)

Herpes simplex virus type 2 glycoprotein G-negative clinical isolates are generated by single frameshift mutations. (64/2000)

Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation.  (+info)