A comparison of salts for the crystallization of macromolecules. (49/935)

Thirty-one proteins and viruses that we knew from our own experience could be crystallized, or had been reported to have been crystallized by others, were investigated. In this experiment, each protein or virus was subjected to a crystallization screen of 12 different salts, each titrated to pH 7.2 beforehand, at concentrations ranging from 20% saturation to 90% saturation. Eight macromolecules failed to crystallize at all from any salt and were omitted from consideration. From the remaining 23 proteins, each salt was scored according to how many proteins and viruses it successfully crystallized. Among several results, one was particularly striking. Sodium malonate clearly was much more successful than any other salt, resulting in the crystallization of 19 of the 23 macromolecules, almost twice as effective as the next most successful salt, which was a draw between sodium acetate, sodium tartrate, sodium formate, and ammonium sulfate (11 of 22). The high success rate of sodium malonate in producing crystals was even more impressive when an overall unique success rate with individual macromolecules was considered.  (+info)

Cobas Mira S endpoint enzymatic assay for plasma formate. (50/935)

In methanol intoxication, increased levels of the metabolite formate are associated with metabolic acidosis and an increased risk for ocular and neurological dysfunction. A simple method for plasma formate measurement by adaptation of a manual enzymatic assay to a Cobas Mira S analyzer is presented. Six microliters of sample is incubated for 5 min with buffer containing nicotinamide-adenine dinucleotide. Fifteen microliters of a suspension of formate dehydrogenase is then added. Absorbance at 340 nm is measured every 25 s. The NADH produced when formate is oxidized is stoichiometric to the amount of formate. The method is sensitive, reproducible, and specific and has a broad measurement range. The frozen reagents are stable for at least six months, so the described method can be applied to irregular and semi-urgent requests. A recent case is reported.  (+info)

Interleukin-10-mediated inhibition of free radical generation in macrophages. (51/935)

Interleukin-10 (IL-10) is a pleiotropic cytokine that controls inflammatory processes by suppressing the production of proinflammatory cytokines that are known to be transcriptionally regulated by nuclear factor-kappaB (NF-kappaB). Although still controversial, IL-10 has been shown to inhibit NF-kappaB activation through a process that involves proteolytic degradation of inhibitory subunit IkappaB-alpha. What is not known, however, is the mechanism by which IL-10 exerts its effect on IkappaB-alpha degradation. The present study investigates the possible role of reactive oxygen species (ROS) and their inhibition by IL-10 in NF-kappaB activation and IkappaB-alpha degradation in macrophages. Treatment of the cells with lipopolysaccharide (LPS) caused activation of NF-kappaB and rapid proteolysis of IkappaB-alpha as determined by the electrophoretic mobility shift assay, gene transfection, and Western blot. IL-10 pretreatment inhibited both NF-kappaB activation and IkappaB-alpha degradation. Both of these processes were also inhibited by ROS scavengers, catalase (H(2)O(2) scavenger), and sodium formate (.OH scavenger) but were minimally affected by superoxide dismutase (O scavenger). These results suggests that.OH radicals, formed by an H(2)O(2)-dependent, metal-catalyzed Fenton reaction, play a major role in this process. Electron spin resonance studies confirmed the formation of.OH radicals in LPS-treated cells. Addition of IL-10 inhibited both IkappaB-alpha degradation and generation of.OH radicals in response to LPS stimulation. These results demonstrate, for the first time, direct evidence for the role of IL-10 in ROS-dependent NF-kappaB activation.  (+info)

Essential role of NHE3 in facilitating formate-dependent NaCl absorption in the proximal tubule. (52/935)

The absorption of NaCl in the proximal tubule is markedly stimulated by formate. This stimulation of NaCl transport is consistent with a cell model involving Cl(-)-formate exchange in parallel with pH-coupled formate recycling due to nonionic diffusion of formic acid or H(+)-formate cotransport. The formate recycling process requires H(+) secretion. Although Na(+)-H(+) exchanger isoform NHE3 accounts for the largest component of H(+) secretion in the proximal tubule, 40-50% of the rates of HCO absorption or cellular H(+) extrusion persist in NHE3 null mice. The purpose of the present investigation is to use NHE3 null mice to directly test the role of apical membrane NHE3 in mediating NaCl absorption stimulated by formate. We demonstrate that formate stimulates NaCl absorption in the mouse proximal tubule microperfused in vivo, but the component of NaCl absorption stimulated by formate is absent in NHE3 null mice. In contrast, stimulation of NaCl absorption by oxalate is preserved in NHE3 null mice, indicating that oxalate-stimulated NaCl absorption is independent of Na(+)-H(+) exchange. The virtually complete dependence of formate-induced NaCl absorption on NHE3 activity raises the possibility that NHE3 and the formate transporters are functionally coupled in the brush border membrane.  (+info)

Microbial metabolism of the pyridine ring. Metabolic pathways of pyridine biodegradation by soil bacteria. (53/935)

1. Two bacteria, a Bacillus sp. and a Nocardia sp. (strain Z1) were isolated from soil by enrichment with 0.1 percent (v/v) pyridine and grew rapidly on this compound as sole C, N and energy source. The monohydroxypyridines, tetrahydropyridine, piperidine and some other analogues were not utilized for growth or oxidized by washed suspensions of either bacterium. 2. Cell-free extracts were unable to metabolize pyridine even after supplementation with a variety of cofactors or protecting agents. Treatment of cells with toluene led to rapid loss of the ability to oxidize pyridine. 3. In the presence of 10mM-semicarbazide at pH 6.0, Nocardia Z1 accumulated a semialdehyde idenditied as its 2,4-dinitrophenylhydrazone by chromatography, mixed melting point, mass spectrometry and isotope trapping from [2,6(-14)C]pyridine as glutarate semialdehyde. 4. Extracts of this bacterium prepared from cells grown with pyridine or exposed to the gratuitous inducer 2-picoline, contained high activities of a specific glutarate semialdehyde dehydrogenase. 5. Cells grown with pyridine or glutarate also contained a glutaric dialdehyde dehydrogenase, an acyl-CoA synthetase and elevated amounts of isocitrate lyase but no glutaryl-CoA dehydrogenase. 6. Bacillus 4 accumulated in the presence of 10mM-semicarbazide several acidic carbonyl compounds from pyridine among which was succinate semialdehyde. Extracts of this bacillus after growth of the cells with pyridine contained an inducible succinate semialdehyde dehydrogenase in amounts at least 50-fold over those found in succinate-grown cells. 7. Two mutants of this bacillus, selected for their inability to grow on pyridine were deficient in succinate semialdehyde dehydrogenase. 8. In the presence of 0.2mM-KCN, washed suspensions of Bacillus 4 accumulated formate and possibly formamide from pyridine. The use of [14C]pyridine showed that formate was derived from C-2 of the pyridine ring. 9. The organism had a specific formamide amidohydrolase cleaving formamide quantitatively to formate and NH3. 10. Formate was further oxidized by the particle fraction. There was no soluble formate dehydrogenase in extracts.  (+info)

Phosphorylation of Marburg virus VP30 at serines 40 and 42 is critical for its interaction with NP inclusions. (54/935)

The Marburg virus (MBGV) nucleocapsid complex is composed of four viral proteins (NP, L, VP35, and VP30) and the negative-strand nonsegmented genomic RNA. NP, L, and VP35 are functionally conserved among the order Mononegavirales, whereas VP30, a phosphoprotein, represents a filovirus-specific nucleocapsid protein. In the present paper, we have characterized the localization and function of VP30 phosphorylation. The main phosphorylation sites are represented by seven serine residues in the region of amino acid 40 to 51 of VP30. Additionally, trace amounts of phosphothreonine were detected. Substitution of serine residues 40 and 42 by alanine abolished the interaction of VP30 with NP-induced inclusion bodies, which contain nucleocapsid-like structures formed by NP. Substitution of the other phosphoserine residues had little effect on this interaction. Replacement of the introduced alanine residues 40 and 42 by aspartate restored the interaction between VP30 and the NP inclusions pointing to the importance of negative charges at these particular positions.  (+info)

Decrease in oxygen affinity of myoglobin by formylation of vinyl groups of heme. (55/935)

Three kinds of green synthetic myoglobin were prepared by recombination of horse heart apomyoglobin with spirographis (2-formyl-4-vinyl-), isospirographis (2-vinyl-4-formyl-), and 2,4-diformyldeuterohemins. The optical and oxygen binding properties of the reconstituted myoglobins containing two isomeric monoformyl-monovinylhemins were found to be different. The oxygen affinities (P50) of spirographis and 2,4-diformylmyoglobins are 2.7 and 2.8 mm Hg, respectively, at 25 degrees, and about 2.5 times lower than that of native protomyglobin, while that of isospirographis myoglobin is 1.0 mm Hg and is similar to native myoglobin. Spirographis oxymyoglobin has absorption maxima (alpha, beta, and Soret bands) at 601, 556.5, and 435 nm, isospirographis oxymyoglobin at 595, 550, 429 nm, and 2,4-diformyl oxymyoglobin at 603, 563.5, and 447 nm. The optical red shifts as well as the decrease in the oxygen affinities of these myoglobins are attributed mainly to the presence of strongly electron-attractive formyl side chains. Since the free isomers of monoformyl-monovinyl heme have similar properties, the differences observed after recombination with apoprotein must be caused by interactions with apomyoglobins. The degree of such a protein effect may be estimated by comparing the absorption spectra of heme before and after recombination and was found to differ among the various myoglobins. Comparison of the oxygen affinities of the myoglobins taking account of this protein factor showed that the increase in the P50 values are inversely related to that in the pK3 values of the free porphyrins. These results suggest the involvement of pi bonding in determining the oxygen-iron bond strength.  (+info)

Microbiodies in methanol-grown Candida boidinii. (56/935)

Intracellular structures were observed in Candida boidinii grown in a medium containing methanol as the sole source of carbon and energy; these structures were absent in the same organism grown in the presence of glucose or ethanol. These substrate-specific structures are ultrastructurally similar to microbodies. Studies with sphaeroplast and a mutant lacking alcohol-oxidase activity indicate that the alcohol may be located in these microbodies.  (+info)