The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. (49/1967)

Illusory contours (perceived edges that exist in the absence of local stimulus borders) demonstrate that perception is an active process, creating features not present in the light patterns striking the retina. Illusory contours are thought to be processed using mechanisms that partially overlap with those of "real" contours, but questions about the neural substrate of these percepts remain. Here, we employed functional magnetic resonance imaging to obtain physiological signals from human visual cortex while subjects viewed different types of contours, both real and illusory. We sampled these signals independently from nine visual areas, each defined by retinotopic or other independent criteria. Using both within- and across-subject analysis, we found evidence for overlapping sites of processing; most areas responded to most types of contours. However, there were distinctive differences in the strength of activity across areas and contour types. Two types of illusory contours differed in the strength of activation of the retinotopic areas, but both types activated crudely retinotopic visual areas, including V3A, V4v, V7, and V8, bilaterally. The extent of activation was largely invariant across a range of stimulus sizes that produce illusory contours perceptually, but it was related to the spatial frequency of displaced-grating stimuli. Finally, there was a striking similarity in the pattern of results for the illusory contour-defined shape and a similar shape defined by stereoscopic depth. These and other results suggest a role in surface perception for this lateral occipital region that includes V3A, V4v, V7, and V8.  (+info)

Responses to contour features in macaque area V4. (50/1967)

The ventral pathway in visual cortex is responsible for the perception of shape. Area V4 is an important intermediate stage in this pathway, and provides the major input to the final stages in inferotemporal cortex. The role of V4 in processing shape information is not yet clear. We studied V4 responses to contour features (angles and curves), which many theorists have proposed as intermediate shape primitives. We used a large parametric set of contour features to test the responses of 152 V4 cells in two awake macaque monkeys. Most cells responded better to contour features than to edges or bars, and about one-third exhibited systematic tuning for contour features. In particular, many cells were selective for contour feature orientation, responding to angles and curves pointing in a particular direction. There was a strong bias toward convex (as opposed to concave) features, implying a neural basis for the well-known perceptual dominance of convexity. Our results suggest that V4 processes information about contour features as a step toward complex shape recognition.  (+info)

Motion-based mechanisms of illusory contour synthesis. (51/1967)

Neurophysiological studies and computational models of illusory contour formation have focused on contour orientation as the underlying determinant of illusory contour shape in both static and moving displays. Here, we report a class of motion-induced illusory contours that demonstrate the existence of novel mechanisms of illusory contour synthesis. In a series of experiments, we show that the velocity of contour terminations and the direction of motion of a partially occluded figure regulate the perceived shape and apparent movement of illusory contours formed from moving image sequences. These results demonstrate the existence of neural mechanisms that reconstruct occlusion relationships from both real and inferred image velocities, in contrast to the static geometric mechanisms that have been the focus of studies to date.  (+info)

Unconscious letter discrimination is enhanced by association with conscious color perception in visual form agnosia. (52/1967)

Adaptive behavior guided by unconscious visual cues occurs in patients with various kinds of brain damage as well as in normal observers, all of whom can process visual information of which they are fully unaware [1] [2] [3] [4] [5] [6] [7] [8]. Little is known on the possibility that unconscious vision is influenced by visual cues that have access to consciousness [9]. Here we report a 'blind' letter discrimination induced through a semantic interaction with conscious color processing in a patient who is agnosic for visual shapes, but has normal color vision and visual imagery. In seeing the initial letters of color names printed in different colors, it is normally easier to name the print color when it is congruent with the initial letter of the color name than when it is not [10]. The patient could discriminate the initial letters of the words 'red' and 'green' printed in the corresponding colors significantly above chance but without any conscious accompaniment, whereas he performed at chance with the reverse color-letter mapping as well as in standard tests of letter reading. We suggest that the consciously perceived colors activated a representation of the corresponding word names and their component letters, which in turn brought out a partially successful, unconscious processing of visual inputs corresponding to the activated letter representations.  (+info)

Perceptual motion standstill in rapidly moving chromatic displays. (53/1967)

In motion standstill, a quickly moving object appears to stand still, and its details are clearly visible. It is proposed that motion standstill can occur when the spatiotemporal resolution of the shape and color systems exceeds that of the motion systems. For moving red-green gratings, the first- and second-order motion systems fail when the grating is isoluminant. The third-order motion system fails when the green/red saturation ratio produces isosalience (equal distinctiveness of red and green). When a variety of high-contrast red-green gratings, with different spatial frequencies and speeds, were made isoluminant and isosalient, the perception of motion standstill was so complete that motion direction judgments were at chance levels. Speed ratings also indicated that, within a narrow range of luminance contrasts and green/red saturation ratios, moving stimuli were perceived as absolutely motionless. The results provide further evidence that isoluminant color motion is perceived only by the third-order motion system, and they have profound implications for the nature of shape and color perception.  (+info)

Discriminating local continuity in curved figures. (54/1967)

We assessed whether the visual system's ability to discriminate subtle perturbations from smoothness in curved shapes was based on 1st-order properties or 2nd-order properties. We investigated which of the two would determine performance in a task where the observer had to detect spatial jitter on aligned, unaligned or unoriented Gabor patches forming either an open or enclosed path. Surprisingly, performance was no better in the conditions employing aligned micropatterns, implicating the use of 2nd-order properties. Varying the peak spatial frequency or the size, (standard deviation of the Gaussian envelope), produced little change in the jitter threshold. By contrast, increasing the spacing between the Gabor patches had a large detrimental effect. Randomizing the orientation of the Gabors also hampered performance. These results indicate that orientation linking may only aid psychophysical performance in detection tasks. If variance was imposed on the size of the blobs (a 2nd-order property), performance was degraded. Variance on the carrier spatial frequency (a 1st-order property) resulted in a smaller worsening of performance. Overall, our results imply that shape discrimination is performed by mechanisms sensitive to 2nd-order micropattern properties, although some dependence on 1st-order properties exists.  (+info)

Object shape differences reflected by somatosensory cortical activation. (55/1967)

Humans can easily by touch discriminate fine details of the shapes of objects. The computation of representations and the representations of objects differing in shape are, when the differences are not founded in different sensory cues or the objects belong to different categories, assumed to take place in a series of cortical areas, which only show differences at the single-neuron level. How the somatosensory cortex computes shape is unknown, but theoretically it should depend heavily on the curvatures of the object surfaces. We measured regional cerebral blood flow (rCBF) of normal volunteers with positron emission tomography (PET) as an index of neuronal activation. One group discriminated a round set of ellipsoids having a narrow spectrum of curvatures and an oblong set of ellipsoids having a broad spectrum of curvatures. Another group discriminated curvatures. When the rCBF from the conditions round and oblong ellipsoid discrimination was contrasted, part of the cortex lining the postcentral sulcus had significantly higher rCBF when ellipsoids having a broader spectrum of curvatures were discriminated. This cortex was also activated by curvature discrimination. The activation is therefore regarded as crucial for the computation of curvature and in accordance with curvature being a major determinant of object form; this cortex is also crucially active in somatosensory shape perception. A comparison of the activation with cytoarchitectural maps, in the anatomical format of the standard brain for both PET and cytoarchitectural brain images, revealed that this part of the cortex lining the postcentral sulcus is situated caudally from cytoarchitectural area 1 and may involve presumptive area 2 on the posterior bank of the sulcus.  (+info)

Cognitive response profile of the human fusiform face area as determined by MEG. (56/1967)

Activation in or near the fusiform gyrus was estimated to faces and control stimuli. Activation peaked at 165 ms and was strongest to digitized photographs of human faces, regardless of whether they were presented in color or grayscale, suggesting that face- and color-specific areas are functionally separate. Schematic sketche evoked approximately 30% less activation than did face photographs. Scrambling the locations of facial features reduced the response by approximately 25% in either hemisphere, suggesting that configurational versus analytic processing is not lateralized at this latency. Animal faces evoked approximately 50% less activity, and common objects, animal bodies or sensory controls evoked approximately 80% less activity than human faces. The (small) responses evoked by meaningless control images were stronger when they included surfaces and shading, suggesting that the fusiform gyrus may use these features in constructing its face-specific response. Putative fusiform activation was not significantly related to stimulus repetition, gender or emotional expression. A midline occipital source significantly distinguished between faces and control images as early as 110 ms, but was more sensitive to sensory qualities. This source significantly distinguished happy and sad faces from those with neutral expressions. We conclude that the fusiform gyrus may selectively encode faces at 165 ms, transforming sensory input for further processing.  (+info)