(1/2055) Role of endothelin in the increased vascular tone of patients with essential hypertension.

We investigated the possible role of endothelin in the increased vasoconstrictor tone of hypertensive patients using antagonists of endothelin receptors. Forearm blood flow (FBF) responses (strain-gauge plethysmography) to intraarterial infusion of blockers of endothelin-A (ETA) (BQ-123) and endothelin-B (ETB) (BQ-788) receptors, separately and in combination, were measured in hypertensive patients and normotensive control subjects. In healthy subjects, BQ-123 alone or in combination with BQ-788 did not significantly modify FBF (P=0.78 and P=0.63, respectively). In hypertensive patients, in contrast, BQ-123 increased FBF by 33+/-7% (P<0.001 versus baseline), and the combination of BQ-123 and BQ-788 resulted in a greater vasodilator response (63+/-12%; P=0.006 versus BQ-123 alone in the same subjects). BQ-788 produced a divergent vasoactive effect in the two groups, with a decrease of FBF (17+/-5%; P=0.004 versus baseline) in control subjects and transient vasodilation (15+/-7% after 20 minutes) in hypertensive patients (P<0.001, hypertensives versus controls). The vasoconstrictor response to endothelin-1 was slightly higher (P=0.04) in hypertensive patients (46+/-4%) than in control subjects (32+/-4%). Our data indicate that patients with essential hypertension have increased vascular endothelin activity, which may be of pathophysiological relevance to their increased vascular tone. In these patients, nonselective ETA and ETB blockade seems to produce a greater vasodilator effect than selective ETA blockade.  (+info)

(2/2055) Modulation of the thermoregulatory sweating response to mild hyperthermia during activation of the muscle metaboreflex in humans.

1. To investigate the effect of the muscle metaboreflex on the thermoregulatory sweating response in humans, eight healthy male subjects performed sustained isometric handgrip exercise in an environmental chamber (35 C and 50 % relative humidity) at 30 or 45 % maximal voluntary contraction (MVC), at the end of which the blood circulation to the forearm was occluded for 120 s. The environmental conditions were such as to produce sweating by increase in skin temperature without a marked change in oesophageal temperature. 2. During circulatory occlusion after handgrip exercise at 30 % MVC for 120 s or at 45 % MVC for 60 s, the sweating rate (SR) on the chest and forearm (hairy regions), and the mean arterial blood pressure were significantly above baseline values (P < 0.05). There were no changes from baseline values in the oesophageal temperature, mean skin temperature, or SR on the palm (hairless regions). 3. During the occlusion after handgrip exercise at 30 % MVC for 60 s and during the occlusion alone, none of the measured parameters differed from baseline values. 4. It is concluded that, under mildly hyperthermic conditions, the thermoregulatory sweating response on the hairy regions is modulated by afferent signals from muscle metaboreceptors.  (+info)

(3/2055) The maximum shortening velocity of muscle should be scaled with activation.

The purpose of this study was to determine whether the maximum shortening velocity (Vmax) in Hill's mechanical model (A. V. Hill. Proc. R. Soc. London Ser. B. 126: 136-195, 1938) should be scaled with activation, measured as a fraction of the maximum isometric force (Fmax). By using the quick-release method, force-velocity (F-V) relationships of the wrist flexors were gathered at five different activation levels (20-100% of maximum at intervals of 20%) from four subjects. The F-V data at different activation levels can be fitted remarkably well with Hill's characteristic equation. In general, the shortening velocity decreases with activation. With the assumption of nonlinear relationships between Hill constants and activation level, a scaled Vmax model was developed. When the F-V curves for submaximal activation were forced to converge at the Vmax obtained with maximum activation (constant Vmax model), there were drastic changes in the shape of the curves. The differences in Vmax values generated by the scaled and constant Vmax models were statistically significant. These results suggest that, when a Hill-type model is used in musculoskeletal modeling, the Vmax should be scaled with activation.  (+info)

(4/2055) Sympathetic nervous system activity and alpha-adrenergic responsiveness in older hypertensive humans.

We have previously demonstrated in normotensive humans an age-associated increase in sympathetic nervous system (SNS) activity combined with appropriate downregulation of alpha-adrenergic responsiveness. Impaired downregulation of alpha-adrenergic responsiveness, despite a comparable level of SNS activity, could contribute to higher blood pressure in older hypertensive humans. We measured arterial plasma norepinephrine (NE) levels and the extravascular NE release rate (NE2) derived from [3H]NE kinetics (to assess systemic SNS activity), and platelet and forearm arterial adrenergic responsiveness in 20 normotensive (N) and in 24 hypertensive (H), otherwise healthy, older subjects (60-75 yr). Although plasma NE levels were similar (N 357 +/- 27 vs. H 322 +/- 22 pg/ml; P = 0.37), NE2 tended to be greater in the hypertensive group (H 2.23 +/- 0.21 vs. N 1.64 +/- 0.20 microgram. min-1. m-2; P = 0. 11), and the NE metabolic clearance rate was greater (H 1,100 +/- 30 vs. N 900 +/- 50 ml/m2; P = 0.004). In the hypertensive group, there was a greater alpha-agonist-mediated inhibition of platelet membrane adenylyl cyclase activity and a NE- but not ANG II-mediated decrease in forearm blood flow. Compared with normotensive subjects, in older hypertensive subjects 1) NE metabolic clearance rate is increased, 2) systemic SNS activity tends to be increased, and 3) arterial and platelet alpha-adrenergic responsiveness is enhanced. These results suggest that heightened SNS activity coupled with enhanced alpha-adrenergic responsiveness may contribute to elevated blood pressure in older hypertensive humans.  (+info)

(5/2055) The effects of posteroventral pallidotomy on the preparation and execution of voluntary hand and arm movements in Parkinson's disease.

We studied the effect of posteroventral pallidotomy on movement preparation and execution in 27 parkinsonian patients using various motor tasks. Patients were evaluated after overnight withdrawal of medication before and 3 months after unilateral pallidotomy. Surgery had no effect on initiation time in unwarned simple and choice reaction time tasks, whereas movement time measured during the same tasks was improved for the contralesional hand. Movement times also improved for isometric and isotonic ballistic movements. In contrast, repetitive, distal and fine movements measured in finger-tapping and pegboard tasks were not improved after pallidotomy. Preparatory processes were investigated using both behavioural and electrophysiological measures. A precued choice reaction time task suggested an enhancement of motor preparation for the contralesional hand. Similarly, movement-related cortical potentials showed an increase in the slope of the late component (NS2) when the patients performed joystick movements with the contralesional hand. However, no significant change was found for the early component (NS1) or when the patient moved the ipsilesional hand. The amplitude of the long-latency stretch reflex of the contralesional hand decreased after surgery. In summary, the data suggest that pallidotomy improved mainly the later stages of movement preparation and the execution of proximal movements with the contralesional limb. These results provide detailed quantitative data on the impact of posteroventral pallidotomy on previously described measures of upper limb akinesia in Parkinson's disease.  (+info)

(6/2055) Endothelium-dependent relaxation by acetylcholine is impaired in hypertriglyceridemic humans with normal levels of plasma LDL cholesterol.

OBJECTIVES: Patients with high triglyceride (of which very low density lipoproteins [VLDL] are the main carriers), but with normal low density lipoprotein (LDL) cholesterol levels, were examined for in vivo endothelium function status. BACKGROUND: Very low density lipoproteins inhibit endothelium-dependent, but not -independent, vasorelaxation in vitro. METHODS: Three groups were studied: 1) healthy volunteers (n = 10; triglyceride 1.24+/-0.14 mmol/liter, LDL cholesterol 2.99+/-0.24 mmol/liter); 2) hypertriglyceridemic (n = 11; triglyceride 6.97+/-1.19 mmol/liter, LDL cholesterol 2.17+/-0.2 mmol/liter, p < 0.05); and 3) hypercholesterolemic (n = 10; triglyceride 2.25+/-0.29 mmol/liter, LDL cholesterol 5.61+/-0.54 mmol/liter; p < 0.05) patients. Vasoactive responses to acetylcholine, sodium nitroprusside, noradrenaline, N(G)-monomethyl-L-arginine and postischemic hyperemia were determined using forearm venous occlusion plethysmography. RESULTS: Responses to acetylcholine (37 microg/min) were significantly dampened both in hypercholesterolemic (% increase in forearm blood flow: 268.2+/-62) and hypertriglyceridemic patients (232.6+/-45.2) when compared with controls (547.8+/-108.9; ANOVA p < 0.05). Responses to sodium nitroprusside (at 1.6 microg/min: controls vs. hypercholesterolemics vs. hypertriglyceridemic: 168.7+/- 25.1 vs. 140.6+/-38.9 vs. 178.5+/-54.5% increase), noradrenaline, N(G)-monomethyl-L-arginine and postischemic hyperemic responses were not different among the groups examined. CONCLUSIONS: Acetylcholine responses are impaired in patients with pathophysiologic levels of plasma triglycerides but normal plasma levels of LDL cholesterol. The impairment observed was comparable to that obtained in hypercholesterolemic patients. We conclude that impaired responses to acetylcholine normally associated with hypercholesterolemia also occur in hypertriglyceridemia. These findings identify a potential mechanism by which high plasma triglyceride levels may be atherogenic independent of LDL cholesterol levels.  (+info)

(7/2055) Endothelial dysfunction, impaired endogenous fibrinolysis, and cigarette smoking: a mechanism for arterial thrombosis and myocardial infarction.

BACKGROUND: Effective endogenous fibrinolysis requires rapid release of tissue plasminogen activator (tPA) from the vascular endothelium. Smoking is a known risk factor for arterial thrombosis and myocardial infarction, and it causes endothelial dysfunction. We therefore examined the effects of cigarette smoking on substance P-induced tPA release in vivo in humans. METHODS AND RESULTS: Blood flow and plasma fibrinolytic factors were measured in both forearms of 12 smokers and 12 age- and sex-matched nonsmokers who received unilateral brachial artery infusions of substance P (2 to 8 pmol/min). In both smokers and nonsmokers, substance P caused dose-dependent increases in blood flow and local release of plasma tPA antigen and activity (P<0.001 for all) but had no effect on the local release of plasminogen activator inhibitor type 1. Compared with nonsmokers, increases in forearm blood flow (P=0.03) and release of tPA antigen (P=0.04) and activity (P<0.001) caused by substance P were reduced in smokers. The area under the curve for release of tPA antigen and activity decreased by 51% and 53%, respectively. CONCLUSIONS: Cigarette smoking causes marked inhibition of substance P-induced tPA release in vivo in humans. This provides an important mechanism whereby endothelial dysfunction may increase the risk of atherothrombosis through a reduction in the acute fibrinolytic capacity.  (+info)

(8/2055) Task-dependent modulation of 15-30 Hz coherence between rectified EMGs from human hand and forearm muscles.

1. Recent reports have shown task-related changes in oscillatory activity in the 15-30 Hz range in the sensorimotor cortex of human subjects and monkeys during skilled hand movements. In the monkey these oscillations have been shown to be coherent with oscillatory activity in the electromyographic activity of hand and forearm muscles. 2. In this study we investigated the modulation of oscillations in the electromyogram (EMG) of human volunteers during tasks requiring precision grip of two spring-loaded levers. 3. Two tasks were investigated: in the 'hold' task, subjects were required to maintain a steady grip force (ca 2.1 N or 2.6 N) for 8 s. In the 'ramp' task, there was an initial hold period for 3 s (force ca 2.1 N) followed by a linear increase in grip force over a 2 s period. The task ended with a further steady hold for 3 s at the higher force level (ca 2.6 N). 4. Surface EMGs were recorded from five hand and forearm muscles in 12 subjects. The coherence of oscillatory activity was calculated between each muscle pair. Frequencies between 1 and 100 Hz were analysed. 5. Each subject showed a peak in the coherence spectra in the 15-30 Hz bandwidth during the hold task. This coherence was absent during the initial movement of the levers. During the ramp task the coherence in the 15-30 Hz range was also significantly reduced during the movement phase, and significantly increased during the second hold period, relative to the initial hold. 6. There was coherence between the simultaneously recorded magnetoencephalogram (MEG) and EMG during steady grip in the hold task; this coherence disappeared during the initial lever movement. Using a single equivalent current dipole source model, the coherent cortical activity was localized to the hand region of the contralateral motor cortex. This suggests that the EMG-EMG coherence was, therefore, at least in part, of cortical origin. 7. The results are discussed in terms of a possible role for synchrony in the efficient recruitment of motor units during maintained grip.  (+info)