Exhaled and nasal NO levels in allergic rhinitis: relation to sensitization, pollen season and bronchial hyperresponsiveness. (9/4775)

Exhaled nitric oxide is a potential marker of lower airway inflammation. Allergic rhinitis is associated with asthma and bronchial hyperresponsiveness. To determine whether or not nasal and exhaled NO concentrations are increased in allergic rhinitis and to assess the relation between hyperresponsiveness and exhaled NO, 46 rhinitic and 12 control subjects, all nonasthmatic nonsmokers without upper respiratory tract infection, were randomly selected from a large-scale epidemiological survey in Central Norway. All were investigated with flow-volume spirometry, methacholine provocation test, allergy testing and measurement of nasal and exhaled NO concentration in the nonpollen season. Eighteen rhinitic subjects completed an identical follow-up investigation during the following pollen season. Exhaled NO was significantly elevated in allergic rhinitis in the nonpollen season, especially in perennially sensitized subjects, as compared with controls (p=0.01), and increased further in the pollen season (p=0.04), mainly due to a two-fold increase in those with seasonal sensitization. Nasal NO was not significantly different from controls in the nonpollen season and did not increase significantly in the pollen season. Exhaled NO was increased in hyperresponsive subjects, and decreased significantly after methacholine-induced bronchoconstriction, suggesting that NO production occurs in the peripheral airways. In allergic rhinitis, an increase in exhaled nitric oxide on allergen exposure, particularly in hyperresponsive subjects, may be suggestive of airway inflammation and an increased risk for developing asthma.  (+info)

Orally exhaled nitric oxide levels are related to the degree of blood eosinophilia in atopic children with mild-intermittent asthma. (10/4775)

Increased levels of nitric oxide have been found in expired air of patients with asthma, and these are thought to be related to the airway inflammatory events that characterize this disorder. Since, in adults, bronchial inflammatory changes are present even in mild disease, the present study was designed to evaluate whether a significant proportion of children with mild-intermittent asthma could have increased exhaled air NO concentrations. Twenty-two atopic children (aged 11.1+/-0.8 yrs) with mild-intermittent asthma, treated only with inhaled beta2-adrenoreceptor agonists on demand and 22 age-matched controls were studied. NO concentrations in orally exhaled air, measured by chemiluminescence, were significantly higher in asthmatics, as compared to controls (19.4+/-3.3 parts per billion (ppb) and 4.0+/-0.5 ppb, respectively; p<0.01). Interestingly, 14 out of 22 asthmatic children had NO levels >8.8 ppb (i.e. >2 standard deviations of the mean in controls). In asthmatic patients, but not in control subjects, statistically significant correlations were found between exhaled NO levels and absolute number or percentage of blood eosinophils (r=0.63 and 0.56, respectively; p<0.01, each comparison). In contrast, exhaled NO levels were not correlated with forced expiratory volume in one second (FEV1) or forced expiratory flows at 25-75% of vital capacity (FEF25-75%) or forced vital capacity (FVC), either in control subjects, or in asthmatic patients (p>0.1, each correlation). These results suggest that a significant proportion of children with mild-intermittent asthma may have airway inflammation, as shown by the presence of elevated levels of nitric oxide in the exhaled air. The clinical relevance of this observation remains to be established.  (+info)

Risk factors for lower airway bacterial colonization in chronic bronchitis. (11/4775)

The aim of this study was to determine the prevalence and risk factors for lower airway bacterial colonization (LABC) in stable chronic bronchitis (CB). Forty-one outpatients with CB were enrolled in the study (age 63.8+/-9.1 yrs (mean+/-SD); forced expiratory volume in one second (FEV1)/forced vital capacity (FVC) 62.8+/-11.2; current/former smokers 24/17). All patients had normal chest radiographs and an indication for performing fibreoptic bronchoscopy (pulmonary nodule, remote haemoptysis). The protected specimen brush (PSB) was used for bacterial sampling, and concentrations > or = 1,000 colony-forming units (cfu) x mL(-1) were considered positive for LABC. The repeatability of the procedure in CB was assessed in a random subsample of 18 subjects. A 72.2% quantitative agreement was found in the repeatability assessment of the PSB technique. Positive PSB cultures, obtained in 9 out of 41 (22%) patients, mainly yielded Haemophilus influenzae. The logistic regression model, used to determine which variables were related to colonization, showed that LABC was associated with current smoking (odds ratio (OR) 9.83, confidence interval (CI) 1.16-83.20) and low FVC (OR 0.73, CI 0.65-0.81). Age and FEV1 were not related to LABC. It was concluded that the prevalence of LABC in stable CB is high (22%), and current smoking is an important risk factor.  (+info)

Predisposing factors to bacterial colonization in chronic obstructive pulmonary disease. (12/4775)

The aim of this prospective observational study was to determine those factors influencing bacterial colonization in patients with stable chronic obstructive pulmonary disease (COPD). Eighty-eight outpatients with stable COPD and 20 patients with normal spirometry and chest radiography (controls) had a fibreoptic bronchoscopy performed with topical aerosol anaesthesia. Bacterial colonization was determined using the protected specimen brush (PSB) with a cut-off > or = 10(3) colony-forming units (CFU x mL(-1)). The influence of age, degree of airflow obstruction, smoking habit, pack-yrs of smoking, and chest radiographic findings on bacterial colonization were assessed by univariate and multivariate analysis. Significant bacterial growth was found in 40% of patients and in none of the controls. Haemophilus influenzae, Streptococcus viridans, S. pneumoniae and Moraxella catarrhalis were the most frequent pathogens. After adjustment for other variables, severe airflow limitation (odds ratio (OR) 5.11, 95% confidence interval (CI) 1.45-17.9) and current smoking (OR 3.17, 95% CI 2.5-8) remained associated with positive bacterial cultures. When only potentially pathogenic micro-organisms were considered, significant bacterial growth was found in 30.7% of patients, with severe airflow obstruction (OR 9.28, 95% CI 2.19-39.3) being the only variable independently associated with positive bacterial cultures. Our results show that stable chronic obstructive pulmonary disease patients have a high prevalence of bacterial colonization of distal airways which is mainly related to the degree of airflow obstruction and cigarette smoking.  (+info)

A pilot study of low-dose erythromycin in bronchiectasis. (13/4775)

Patients with bronchiectasis suffer from sputum production, recurrent exacerbations, and progressive airway destruction. Erythromycin is effective in diffuse panbronchiolitis, another suppurative airway disorder, although its efficacy is unknown in idiopathic bronchiectasis. A double-blind placebo-controlled study was therefore conducted to evaluate the effects of 8-week administration of low dose erythromycin (500 mg b.i.d.) in steady-state idiopathic bronchiectasis. Patients in the erythromycin group (n=11, 8 female, mean age 50+/-15 yrs), but not the placebo group (n=10, 8 female, mean age 59+/-16 yrs) had significantly improved forced expiratory volume in one second, forced vital capacity and 24-h sputum volume after 8 weeks (p<0.05). There was no parallel improvement in sputum pathogens, leukocytes, interleukin (IL)-1alpha and IL-8, tumour necrosis factor-alpha, or leukotriene B4. The results of this pilot study show that low-dose erythromycin improves lung function and sputum volume in bronchiectasis. Further studies are indicated to evaluate the efficacy of long-term erythromycin therapy in bronchiectasis.  (+info)

Subcellular adaptation of the human diaphragm in chronic obstructive pulmonary disease. (14/4775)

Pulmonary hyperinflation impairs the function of the diaphragm in patients with chronic obstructive pulmonary disease (COPD). However, it has been recently demonstrated that the muscle can counterbalance this deleterious effect, remodelling its structure (i.e. changing the proportion of different types of fibres). The aim of this study was to investigate whether the functional impairment present in COPD patients can be associated with structural subcellular changes of the diaphragm. Twenty individuals (60+/-9 yrs, 11 COPD patients and 9 subjects with normal spirometry) undergoing thoracotomy were included. Nutritional status and respiratory function were evaluated prior to surgery. Then, small samples of the costal diaphragm were obtained and processed for electron microscopy analysis. COPD patients showed a mean forced expiratory volume in one second (FEV1) of 60+/-9% predicted, a higher concentration of mitochondria (n(mit)) in their diaphragm than controls (0.62+/-0.16 versus 0.46+/-0.16 mitochondrial transections (mt) x microm(-2), p<0.05). On the other hand, subjects with air trapping (residual volume (RV)/total lung capacity (TLC) >37%) disclosed not only a higher n(mit) (0.63+/-0.17 versus 0.43+/-0.07 mt x microm(-2), p<0.05) but shorter sarcomeres (L(sar)) than subjects without this functional abnormality (2.08+/-0.16 to 2.27+/-0.15 microm, p<0.05). Glycogen stores were similar in COPD and controls. The severity of airways obstruction (i.e. FEV1) was associated with n(mit) (r=-0.555, p=0.01), while the amount of air trapping (i.e. RV/TLC) was found to correlate with both n(mit) (r=0.631, p=0.005) and L(sar) (r=-0.526, p<0.05). Finally, maximal inspiratory pressure (PI,max) inversely correlated with n(mit) (r=-0.547, p=0.01). In conclusion, impairment in lung function occurring in patients with chronic obstructive pulmonary disease is associated with subcellular changes in their diaphragm, namely a shortening in the length of sarcomeres and an increase in the concentration of mitochondria. These changes form a part of muscle remodelling, probably contributing to a better functional muscle behaviour.  (+info)

Long-term recovery of diaphragm strength in neuralgic amyotrophy. (15/4775)

Diaphragm paralysis is a recognized complication of neuralgic amyotrophy that causes severe dyspnoea. Although recovery of strength in the arm muscles, when affected, is common, there are little data on recovery of diaphragm function. This study, therefore, re-assessed diaphragm strength in cases of bilateral diaphragm paralysis due to neuralgic amyotrophy that had previously been diagnosed at the authors institutions. Fourteen patients were recalled between 2 and 11 yrs after the original diagnosis. Respiratory muscle and diaphragm strength were measured by volitional manoeuvres as maximal inspiratory pressure and sniff transdiaphragmatic pressure. Cervical magnetic phrenic nerve stimulation was used to give a nonvolitional measure of diaphragm strength: twitch transdiaphragmatic pressure. Only two patients remained severely breathless. Ten of the 14 patients had evidence of some recovery of diaphragm strength, in seven cases to within 50% of the lower limit of normal. The rate of recovery was variable: one patient had some recovery after 2 yrs, and the rest took 3 yrs or more. In conclusion, in most patients with diaphragm paralysis due to neuralgic amyotrophy, some recovery of the diaphragm strength occurs, but the rate of recovery may be slow.  (+info)

Exhaled nitric oxide; relationship to clinicophysiological markers of asthma severity. (16/4775)

Bronchial asthma is an airway disorder associated with bronchial hyperresponsiveness, variable airflow obstruction and elevated levels of nitric oxide (NO) in exhaled air. The variables all reflect, in part, the underlying airway inflammation in this disease. To understand their interrelationships we have investigated the relationship between exhaled NO levels and clinicophysiological markers of asthma severity. Twenty-six steroid naive atopic asthmatics participated in the analysis. All were given diary cards and were asked to record their peak expiratory flow (PEF) rates twice daily together with their asthma symptom scores and beta-agonist use. Diary cards were collected 2 weeks later and measurements of exhaled NO levels, FEV1 and histamine bronchial hyperreactivity (PC20 histamine) were undertaken. Exhaled NO levels were significantly higher in our study population than in normal control subjects and correlated negatively with PC20 histamine (r = -0.51; P = 0.008) and positively with PEF diurnal variability (r = 0.58; P = 0.002), but not with symptom scores, beta-agonist use of FEV1 (%). We conclude that a significant relationship exists between exhaled NO levels and the two characteristic features and markers of asthma severity, namely bronchial hyperreactivity and PEF diurnal variability. The lack of correlation between symptom score and beta-agonist use, of FEV1 (%) predicted and exhaled NO suggests that these measures are reflective of differing aspects of asthma.  (+info)