PCR comparison of Mycobacterium avium isolates obtained from patients and foods. (17/3560)

Mycobacterium avium is a cause of disseminated disease in AIDS patients. A need for a better understanding of possible sources and routes of transmission of this organism has arisen. This study utilized a PCR typing method designed to amplify DNA segments located between the insertion sequences IS1245 and IS1311 to compare levels of relatedness of M. avium isolates found in patients and foods. Twenty-five of 121 food samples yielded 29 mycobacterial isolates, of which 12 were M. avium. Twelve food and 103 clinical M. avium isolates were tested. A clinical isolate was found to be identical to a food isolate, and close relationships were found between two patient isolates and two food isolates. Relatedness between food isolates and patient isolates suggests the possibility that food is a potential source of M. avium infection. This study demonstrates a rapid, inexpensive method for typing M. avium, possibly replacing pulsed-field gel electrophoresis.  (+info)

Lessons from a large outbreak of Escherichia coli O157:H7 infections: insights into the infectious dose and method of widespread contamination of hamburger patties. (18/3560)

Between November 1992 and February 1993, a large outbreak of Escherichia coli O157:H7 infections occurred in the western USA and was associated with eating ground beef patties at restaurants of one fast-food chain. Restaurants that were epidemiologically linked with cases served patties produced on two consecutive dates; cultures of recalled ground beef patties produced on those dates yielded E. coli O157:H7 strains indistinguishable from those isolated from patients, confirming the vehicle of illness. Seventy-six ground beef patty samples were cultured quantitatively for E. coli O157:H7. The median most probable number of organisms was 1.5 per gram (range, < 0.3-15) or 67.5 organisms per patty (range, < 13.5-675). Correlation of the presence of E. coli O157:H7 with other bacterial indicators yielded a significant association between coliform count and the presence of E. coli O157:H7 (P = 0.04). A meat traceback to investigate possible sources of contamination revealed cattle were probably initially colonized with E. coli O157:H7, and that their slaughter caused surface contamination of meat, which once combined with meat from other sources, resulted in a large number of contaminated ground beef patties. Microbiological testing of meat from lots consumed by persons who became ill was suggestive of an infectious dose for E. coli O157:H7 of fewer than 700 organisms. These findings present a strong argument for enforcing zero tolerance for this organism in processed food and for markedly decreasing contamination of raw ground beef. Process controls that incorporate microbiological testing of meat may assist these efforts.  (+info)

A Mexican restaurant-associated outbreak of Salmonella Enteritidis type 34 infections traced to a contaminated egg farm. (19/3560)

In May 1996, the Georgia Division of Public Health was notified about a cluster of persons with Salmonella Enteritidis (SE) infections in Waycross, Georgia. A matched pair case-control study to determine risk factors for illness found a statistically significant association of SE infection with a history of having eaten at Restaurant A during the 5 days before onset of illness (relative risk = 13 [95% confidence interval (CI) = 3-62, P < 0.01]). In a second case-control study, to determine specific food exposures, consumption of a deep-fried Mexican dish (chile relleno) (4 of 21 cases vs. 0 of 26 controls, odds ratio undefined, 95% CI > 1.46, P = 0.034) was found to be significantly associated with SE infection. An environmental investigation found evidence of suboptimal food storage and cooking temperatures at Restaurant A; cross contamination of foods may have contributed to the low attributable risk identified for chile rellenos. Five of 37 Restaurant A food and environment specimens yielded SE strains. All five positive specimens were from chiles rellenos. Of the seven outbreak-associated strains (six patient isolates and one food isolate from Restaurant A) for which phage typing was conducted, all were phage type 34. A FDA traceback investigation through Restaurant A's single-egg supplier identified the potential source as three interrelated farms in South Carolina. Environmental culture from one of these farms yielded SE phage type 34. As a result of this outbreak, FDA helped institute a statewide egg quality-assurance programme in South Carolina to minimize SE contamination of eggs.  (+info)

Phenotypic and genotypic typing of food and clinical isolates of Enterobacter sakazakii. (20/3560)

Enterobacter sakazakii, designated a unique species in 1980, has been implicated as the causative organism in a rare but severe form of neonatal meningitis. Dried infant formula milk has been identified as a potential source of the organism. E. sakazakii isolates from dried infant formula available in Canada and clinical isolates obtained from Canadian hospital culture collections were characterised by phenotypic (biotype and antibiograms) and genotypic (ribotyping, random amplification of polymorphic DNA and pulsed-field gel electrophoresis) methods. Three biotypes and four antibiogram patterns were observed in the 18 isolates examined. Ribotyping with the Dupont Riboprinter microbial identification system divided the 18 isolates into 10 ribotypes. Three isolates from the same hospital had indistinguishable ribotyping patterns although each was isolated in a different year, as did three food isolates from one company. Pulsed-field gel electrophoresis (PFGE) and random amplification of polymorphic DNA (RAPD) profiles indicated minor differences between the isolates that were indistinguishable by ribotyping. PFGE (with the restriction endonucleases Xba1 and Spe1) and RAPD gave discrete patterns that enabled easy comparison of E. sakazakii isolates, with a high degree of discrimination. The discriminatory index showed RAPD and PFGE were shown to be the most discriminatory typing schemes for E. sakazakii, followed by ribotyping, biotyping and antibiograms.  (+info)

Molecular subtyping of Clostridium perfringens by pulsed-field gel electrophoresis to facilitate food-borne-disease outbreak investigations. (21/3560)

Clostridium perfringens is a common cause of food-borne illness. The illness is characterized by profuse diarrhea and acute abdominal pain. Since the illness is usually self-limiting, many cases are undiagnosed and/or not reported. Investigations are often pursued after an outbreak involving large numbers of people in institutions, at restaurants, or at catered meals. Serotyping has been used in the past to assist epidemiologic investigations of C. perfringens outbreaks. However, serotyping reagents are not widely available, and many isolates are often untypeable with existing reagents. We developed a pulsed-field gel electrophoresis (PFGE) method for molecular subtyping of C. perfringens isolates to aid in epidemiologic investigations of food-borne outbreaks. Six restriction endonucleases (SmaI, ApaI, FspI, MluI, KspI, and XbaI) were evaluated with a select panel of C. perfringens strains. SmaI was chosen for further studies because it produced 11 to 13 well-distributed bands of 40 to approximately 1,100 kb which provided good discrimination between isolates. Seventeen distinct patterns were obtained with 62 isolates from seven outbreak investigations or control strains. In general, multiple isolates from a single individual had indistinguishable PFGE patterns. Epidemiologically unrelated isolates (outbreak or control strains) had unique patterns; isolates from different individuals within an outbreak had similar, if not identical, patterns. PFGE identifies clonal relationships of isolates which will assist epidemiologic investigations of food-borne-disease outbreaks caused by C. perfringens.  (+info)

Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. (22/3560)

Febrile gastroenteritis in five healthy persons was associated with the consumption of vacuum-packed cold-smoked rainbow trout containing Listeria monocytogenes. L. monocytogenes isolates from the incriminated fish product lot and the stool samples were all of serotype 1/2a and were indistinguishable by pulsed-field gel electrophoresis employing AscI and SmaI.  (+info)

Visualization and modelling of the thermal inactivation of bacteria in a model food. (23/3560)

A large number of incidents of food poisoning have been linked to undercooked meat products. The use of mathematical modelling to describe heat transfer within foods, combined with data describing bacterial thermal inactivation, may prove useful in developing safer food products while minimizing thermal overprocessing. To examine this approach, cylindrical agar blocks containing immobilized bacteria (Salmonella typhimurium and Brochothrix thermosphacta) were used as a model system in this study. The agar cylinders were subjected to external conduction heating by immersion in a water bath. They were then incubated, sliced open, and examined by image analysis techniques for regions of no bacterial growth. A finite-difference scheme was used to model thermal conduction and the consequent bacterial inactivation. Bacterial inactivation rates were modelled with values for the time required to reduce bacterial number by 90% (D) and the temperature increase required to reduce D by 90% taken from the literature. Model simulation results agreed well with experimental results for both bacteria, demonstrating the utility of the technique.  (+info)

Development of bacterial contamination during production of yeast extracts. (24/3560)

Baker's yeast suspensions having bacterial populations of 10(6) and 10(8) CFU/ml were subjected to autolysis processes designed to obtain yeast extracts (YE). The bacterial contaminants added to the yeast cell suspensions were produced with spent broths obtained from a commercial yeast production plant and contained 59% cocci (Leuconostoc, Aerococcus, Lactococcus) as well as 41% bacilli (Bacillus). Autolyses were conducted at four different pH levels (4.0, 5.5, 7.0, and 8.5) and with two autolysis-promoting agents (ethyl acetate and chitosan). Processing parameters were more important than the initial bacterial population in the development of contaminating bacteria during manufacture of YE. Drops in the viable bacterial population after a 24-h autolysis were observed when pH was adjusted to 4.0 or when ethyl acetate was added. A significant interaction was found between the effects of pH and autolysis promoters on the bacterial population in YE, indicating that the activity of ethyl acetate, as opposed to that of chitosan, was not influenced by pH.  (+info)