North Atlantic Oscillation synchronizes food-web interactions in central European lakes. (33/1057)

A regular and distinct feature of seasonal plankton succession in temperate lakes is the early summer period of algal suppression by herbivores, i.e. the clear water phase. Within the last 30 years the timing of this food-web interaction between algae and herbivores has advanced on average by approximately two weeks in central European lakes due to faster population growth of herbivores in warmer water. Trend and inter-annual variability in clear water timing were strongly related to the climate dynamics of the North Atlantic, i.e. the North Atlantic Oscillation (NAO). Due to its large-scale effects, the NAO synchronized plankton succession in central European lakes, causing a striking temporal coherence of a food-web interaction over several hundreds of kilometers.  (+info)

Community-wide distribution of predator-prey interaction strength in kelp forests. (34/1057)

The strength of interactions between predators and their prey (interaction strength) varies enormously among species within ecological communities. Understanding the community-wide distribution of interaction strengths is vital, given that communities dominated by weak interactions may be more stable and resistant to invasion. In the oceans, previous studies have reported log-normal distributions of per capita interaction strength. We estimated the distribution of predator-prey interaction strengths within a subtidal speciose herbivore community (45 species). Laboratory experiments were used to determine maximum per capita interaction strengths for eight species of herbivores (including amphipods, isopods, gastropods, and sea urchins) that graze on giant kelp (Macrocystis pyrifera) microscopic stages. We found that maximum per capita interaction strength saturated as a function of individual herbivore biomass, likely caused by predator/prey size thresholds. Incorporating this nonlinearity, we predicted maximum per capita interaction strength for the remaining herbivore species. The resulting distribution of per capita interaction strengths was bimodal, in striking contrast to previous reports from other communities. Although small herbivores often had per capita interaction strengths similar to larger herbivores, their tendency to have greater densities in the field increased their potential impact as grazers. These results indicate that previous conclusions about the distributions of interaction strength in natural communities are not general, and that intermediate-sized predators can under realistic circumstances represent the most effective consumers in natural communities.  (+info)

Algal blooms reduce the uptake of toxic methylmercury in freshwater food webs. (35/1057)

Mercury accumulation in fish is a global public health concern, because fish are the primary source of toxic methylmercury to humans. Fish from all lakes do not pose the same level of risk to consumers. One of the most intriguing patterns is that potentially dangerous mercury concentrations can be found in fish from clear, oligotrophic lakes whereas fish from greener, eutrophic lakes often carry less mercury. In this study, we experimentally tested the hypothesis that increasing algal biomass reduces mercury accumulation at higher trophic levels through the dilution of mercury in consumed algal cells. Under bloom dilution, as algal biomass increases, the concentration of mercury per cell decreases, resulting in a lower dietary input to grazers and reduced bioaccumulation in algal-rich eutrophic systems. To test this hypothesis, we added enriched stable isotopes of Hg to experimental mesocosms and measured the uptake of toxic methylmercury (CH3 200Hg+) and inorganic 201Hg2+ by biota at several algal concentrations. We reduced absolute spike detection limits by 50-100 times compared with previous techniques, which allowed us to conduct experiments at the extremely low aqueous Hg concentrations that are typical of natural systems. We found that increasing algae reduced CH3Hg+ concentrations in zooplankton 2-3-fold. Bloom dilution may provide a mechanistic explanation for lower CH3Hg+ accumulation by zooplankton and fish in algal-rich relative to algal-poor systems.  (+info)

A common rule for the scaling of carnivore density. (36/1057)

Population density in plants and animals is thought to scale with size as a result of mass-related energy requirements. Variation in resources, however, naturally limits population density and may alter expected scaling patterns. We develop and test a general model for variation within and between species in population density across the order Carnivora. We find that 10,000 kilograms of prey supports about 90 kilograms of a given species of carnivore, irrespective of body mass, and that the ratio of carnivore number to prey biomass scales to the reciprocal of carnivore mass. Using mass-specific equations of prey productivity, we show that carnivore number per unit prey productivity scales to carnivore mass near -0.75, and that the scaling rule can predict population density across more than three orders of magnitude. The relationship provides a basis for identifying declining carnivore species that require conservation measures.  (+info)

Salmon-derived nitrogen in terrestrial invertebrates from coniferous forests of the Pacific Northwest. (37/1057)

BACKGROUND: Bi-directional flow of nutrients between marine and terrestrial ecosystems can provide essential resources that structure communities in transitional habitats. On the Pacific coast of North America, anadromous salmon (Oncorhynchus spp.) constitute a dominant nutrient subsidy to aquatic habitats and riparian vegetation, although the contribution to terrestrial habitats is not well established. We use a dual isotope approach of delta15N and delta13C to test for the contribution of salmon nutrients to multiple trophic levels of litter-based terrestrial invertebrates below and above waterfalls that act as a barrier to salmon migration on two watersheds in coastal British Columbia. RESULTS: Invertebrates varied predictably in delta15N with enrichment of 3-8 per thousand below the falls compared with above the falls in all trophic groups on both watersheds. We observed increasing delta15N levels in our invertebrate groups with increasing consumption of dietary protein. Invertebrates varied in delta13C but did not always vary predictably with trophic level or habitat. From 19.4 to 71.5% of invertebrate total nitrogen was originally derived from salmon depending on taxa, watershed, and degree of fractionation from the source. CONCLUSIONS: Enrichment of delta15N in the invertebrate community below the falls in conjunction with the absence of delta13C enrichment suggests that enrichment in delta15N occurs primarily through salmon-derived nitrogen subsidies to litter, soil and vegetation N pools rather than from direct consumption of salmon tissue or salmon tissue consumers. Salmon nutrient subsidies to terrestrial habitats may result in shifts in invertebrate community structure, with subsequent implications for higher vertebrate consumers, particularly the passerines.  (+info)

Stability in real food webs: weak links in long loops. (38/1057)

Increasing evidence that the strengths of interactions among populations in biological communities form patterns that are crucial for system stability requires clarification of the precise form of these patterns, how they come about, and why they influence stability. We show that in real food webs, interaction strengths are organized in trophic loops in such a way that long loops contain relatively many weak links. We show and explain mathematically that this patterning enhances stability, because it reduces maximum "loop weight" and thus reduces the amount of intraspecific interaction needed for matrix stability. The patterns are brought about by biomass pyramids, a feature common to most ecosystems. Incorporation of biomass pyramids in 104 food-web descriptions reveals that the low weight of the long loops stabilizes complex food webs. Loop-weight analysis could be a useful tool for exploring the structure and organization of complex communities.  (+info)

Cluster size distributions: signatures of self-organization in spatial ecologies. (39/1057)

Three different lattice-based models for antagonistic ecological interactions, both nonlinear and stochastic, exhibit similar power-law scalings in the geometry of clusters. Specifically, cluster size distributions and perimeter-area curves follow power-law scalings. In the coexistence regime, these patterns are robust: their exponents, and therefore the associated Korcak exponent characterizing patchiness, depend only weakly on the parameters of the systems. These distributions, in particular the values of their exponents, are close to those reported in the literature for systems associated with self-organized criticality (SOC) such as forest-fire models; however, the typical assumptions of SOC need not apply. Our results demonstrate that power-law scalings in cluster size distributions are not restricted to systems for antagonistic interactions in which a clear separation of time-scales holds. The patterns are characteristic of processes of growth and inhibition in space, such as those in predator-prey and disturbance-recovery dynamics. Inversions of these patterns, that is, scalings with a positive slope as described for plankton distributions, would therefore require spatial forcing by environmental variability.  (+info)

Self-organized instability in complex ecosystems. (40/1057)

Why are some ecosystems so rich, yet contain so many rare species? High species diversity, together with rarity, is a general trend in neotropical forests and coral reefs. However, the origin of such diversity and the consequences of food web complexity in both species abundances and temporal fluctuations are not well understood. Several regularities are observed in complex, multispecies ecosystems that suggest that these ecologies might be organized close to points of instability. We explore, in greater depth, a recent stochastic model of population dynamics that is shown to reproduce: (i) the scaling law linking species number and connectivity; (ii) the observed distributions of species abundance reported from field studies (showing long tails and thus a predominance of rare species); (iii) the complex fluctuations displayed by natural communities (including chaotic dynamics); and (iv) the species-area relations displayed by rainforest plots. It is conjectured that the conflict between the natural tendency towards higher diversity due to immigration, and the ecosystem level constraints derived from an increasing number of links, leaves the system poised at a critical boundary separating stable from unstable communities, where large fluctuations are expected to occur. We suggest that the patterns displayed by species-rich communities, including rarity, would result from such a spontaneous tendency towards instability.  (+info)