Characterization of integrin-tetraspanin adhesion complexes: role of tetraspanins in integrin signaling. (41/1828)

Tetraspanins (or proteins from the transmembrane 4 superfamily, TM4SF) form membrane complexes with integrin receptors and are implicated in integrin-mediated cell migration. Here we characterized cellular localization, structural composition, and signaling properties of alpha3beta1-TM4SF adhesion complexes. Double-immunofluorescence staining showed that various TM4SF proteins, including CD9, CD63, CD81, CD82, and CD151 are colocalized within dot-like structures that are particularly abundant at the cell periphery. Differential extraction in conjunction with chemical cross-linking indicated that the cell surface fraction of alpha3beta1-TM4SF protein complexes may not be directly linked to the cytoskeleton. However, in cells treated with cytochalasin B alpha3beta1-TM4SF protein complexes are relocated into intracellular vesicles suggesting that actin cytoskeleton plays an important role in the distribution of tetraspanins into adhesion structures. Talin and MARCKS are partially codistributed with TM4SF proteins, whereas vinculin is not detected within the tetraspanin-containing adhesion structures. Attachment of serum-starved cells to the immobilized anti-TM4SF mAbs induced dephosphorylation of focal adhesion kinase (FAK). On the other hand, clustering of tetraspanins in cells attached to collagen enhanced tyrosine phosphorylation of FAK. Furthermore, ectopic expression of CD9 in fibrosarcoma cells affected adhesion-induced tyrosine phosphorylation of FAK, that correlated with the reorganization of the cortical actin cytoskeleton. These results show that tetraspanins can modulate integrin signaling, and point to a mechanism by which TM4SF proteins regulate cell motility.  (+info)

Differential function of N-cadherin and cadherin-7 in the control of embryonic cell motility. (42/1828)

Similar amounts of N-cadherin and cadherin-7, the prototypes of type I and type II cadherin, induced cell-cell adhesion in murine sarcoma 180 transfectants, Ncad-1 and cad7-29, respectively. However, in the initial phase of aggregation, Ncad-1 cells aggregated more rapidly than cad7-29 cells. Isolated Ncad-1 and cad7-29 cells adhered and spread in a similar manner on fibronectin (FN), whereas aggregated cad7-29 cells were more motile and dispersed than aggregated Ncad-1 cells. cad7-29 cells established transient contacts with their neighbors which were stabilized if FN-cell interactions were perturbed. In contrast, Ncad-1 cells remained in close contact when they migrated on FN. Both beta-catenin and cadherin were more rapidly downregulated in cad7-29 than in Ncad-1 cells treated with cycloheximide, suggesting a higher turnover rate for cadherin-7-mediated cell-cell contacts than for those mediated by N-cadherin. The extent of FN-dependent focal adhesion kinase phosphorylation was much lower if the cells had initiated N-cadherin-mediated rather than cadherin-7-mediated cell adhesion before plating. On grafting into the embryo, Ncad-1 cells did not migrate and remained at or close to the graft site, even after 48 h, whereas grafted cad7-29 cells dispersed efficiently into embryonic structures. Thus, the adhesive phenotype of cadherin-7-expressing cells is regulated by the nature of the extracellular matrix environment which also controls the migratory behavior of the cells. In addition, adhesions mediated by different cadherins differentially regulate FN-dependent signaling. The transient contacts specifically observed in cadherin- 7-expressing cells may also be important in the control of cell motility.  (+info)

Phosphorylation of p125FAK and paxillin focal adhesion proteins in src-transformed cells with different metastatic capacity. (43/1828)

Hamster fibroblasts transformed by Rous sarcoma virus (RSV) display different metastatic potentials that are associated with specific structural features of the v-src oncoprotein. This diverse metastatic activity could be due to various tyrosine phosphorylation levels of specific src protein substrates. To check this hypothesis, phosphorylation of the FAK and paxillin proteins, involved in signal transduction pathways and known as src protein substrates, was tested. It was shown that FAK and paxillin are hyperphosphorylated in the high metastatic cell lines as compared with the phosphotyrosine level of these proteins found in the low metastatic cell lines. In addition, our data confirm that v-src protein plays a direct role in paxillin phosphorylation.  (+info)

Cooperation between thrombospondin-1 type 1 repeat peptides and alpha(v)beta(3) integrin ligands to promote melanoma cell spreading and focal adhesion kinase phosphorylation. (44/1828)

CD47-binding sequences from the carboxyl-terminal domain of thrombospondin-1 (TSP1) are known to regulate activity of the alpha(v)beta(3) integrin (Gao, G., Lindberg, F. P., Dimitry, J. M., Brown, E. J., and Frazier, W. A. (1996) J. Cell Biol. 135, 533-544). Here we show that peptides from the type 1 repeats of TSP1 also stimulate alpha(v)beta(3) integrin function in melanoma cells. Addition of soluble peptide 246 (KRFKQDGGWSHWSPWSS) enhances spreading of A2058 melanoma cells on several alpha(v)beta(3) integrin ligands, including vitronectin, recombinant TSP1 fragments containing the Arg-Gly-Asp sequence, and native TSP1. This activity requires the Trp residues and is independent of CD36-binding sequences in the type 1 repeats. Recombinant type 1 repeats expressed as a glutathione S-transferase fusion protein also enhance spreading on vitronectin and TSP1. Activation of alpha(v)beta(3) integrin by the soluble peptide 246 stimulates organization of F-actin and increases tyrosine phosphorylation of focal adhesion kinase. In contrast, direct adhesion of melanoma cells on immobilized peptide 246 inhibits tyrosine phosphorylation of focal adhesion kinase. Stimulation of alpha(v)beta(3) integrin function by the type 1 repeat peptide differs from that induced by CD47-binding TSP1 peptides in that heparan sulfate proteoglycans are required and pertussis toxin does not inhibit the former activity. Thus, the type 1 repeats contain a second sequence of TSP1 that can enhance alpha(v)beta(3) integrin signaling, and these two sequences stimulate recognition of both vitronectin and TSP1 by the alpha(v)beta(3) integrin.  (+info)

Focal adhesion kinase promotes phospholipase C-gamma1 activity. (45/1828)

The nonreceptor tyrosine kinase FAK ("focal adhesion kinase") is a key mediator of integrin signaling events controlling cellular responses to the extracellular matrix, including spreading, migration, proliferation, and survival. Integrin-ligand interactions stimulate FAK tyrosine phosphorylation and activation of FAK signaling functions. Here evidence is presented that the FAK autophosphorylation site Tyr-397 mediates a direct interaction with the C-terminal Src homology 2 domain of phospholipase C (PLC)-gamma1 and that this is required for both adhesion-dependent association of the two molecules and increased inositol phosphate production in mouse embryo fibroblasts. Overexpression of FAK and PLC-gamma1 in COS-7 cells increases PLC-gamma1 enzymatic activity and tyrosine phosphorylation, also dependent on FAK Tyr-397. However, FAK appears incapable of directly phosphorylating PLC-gamma1. These observations suggest a role for FAK in recruiting PLC-gamma1 to the plasma membrane at sites of cell-matrix adhesion and there promoting its enzymatic activity, possibly by releasing the repression caused by intramolecular interactions of the PLC-gamma1 Src homology domains and/or by positioning it for phosphorylation by associated Src-family kinases. These findings expand the known signaling functions of FAK and provide mechanistic insight into integrin-stimulation of PLC-gamma1.  (+info)

Role of focal adhesion kinase in MAP kinase activation by insulin-like growth factor-I or insulin. (46/1828)

Integrin-induced focal adhesion kinase (FAK) phosphorylation as well as insulin-like growth factor-I (IGF-I) and insulin activate MAP kinase. Since IGF-I or insulin have been suggested to affect FAK phosphorylation, we analyzed the role of FAK in IGF-I- or insulin-induced MAP kinase activation. Although MAP kinase was stimulated by IGF-I or insulin, FAK tyrosine phosphorylation remained unchanged in fibroblasts expressing normal or transiently elevated levels of IGF-I and insulin receptors. Further analysis in FAK deficient fibroblasts suggested that FAK impedes MAP kinase activation by IGF-I or insulin.  (+info)

Changing roles of cadherins and catenins during progression of squamous intraepithelial lesions in the uterine cervix. (47/1828)

Uterine cervix represents a convenient model for the study of the gradual transformation of normal squamous epithelium via low- to high-grade squamous intraepithelial lesions (SILs). Because SIL, on the basis of the cytokeratins expressed, are thought to originate from the reserve cells, we analyzed whether SILs also show a reserve cell phenotype with respect to intercellular interactions. The changes in expression and subcellular localization of the components of the adherens junction and desmosomal complexes were investigated in normal, metaplastic, and premalignant cervical epithelium, as well as in cell cultures derived from these tissues. The results suggest that 1) during progression of SILs, E-cadherin is suppressed, with its role in cell-cell connections diminishing; 2) P-cadherin, in contrast, becomes the predominant cadherin in high-grade SILs; 3) the level of cellular alpha-catenin is dramatically decreased in high-grade SILs; 4) the level of beta-catenin is decreased during progression of SILs, with plakoglobin suggestively becoming the predominant catenin mediating connection of cadherins to the cytoskeleton; 5) the assembly of desmosomes is affected during progression of SILs and is accompanied by a dramatically decreased expression for desmogleins and desmoplakins (I, II); and 6) expression of differentiation markers (involucrin, CK13) in high-grade SILs seems to be controlled by P-cadherin as opposed to E-cadherin in the normal tissue counterpart. We conclude that during development of cervical lesions substantial (both quantitative and qualitative) changes occur in cell-cell junctions, making the interactions of cells in lesions dissimilar from those of reserve cells, basal cells, or cells of immature squamous metaplasia, despite existing morphological similarity between all of these cell types and cells of high-grade lesions.  (+info)

Platelet-derived growth factor-BB (PDGF-BB) regulation of migration and focal adhesion kinase phosphorylation in rabbit aortic vascular smooth muscle cells: roles of phosphatidylinositol 3-kinase and mitogen-activated protein kinases. (48/1828)

OBJECTIVE: Phosphatidylinositol 3'-kinase (PI3-kinase) is implicated in cell migration and focal adhesion kinase (FAK) phosphorylation. In contrast, it has been proposed that mitogen-activated protein (MAP) kinases are essential for proliferation but may be dissociated from chemotactic signalling. We investigated the roles of PI3-kinase and p42/p44 MAP kinases in cell migration and FAK tyrosine phosphorylation induced by platelet-derived growth factor-BB (PDGF-BB) in rabbit aortic vascular smooth muscle cells (VSMCs). The roles of PI3-kinase and MAP kinase pathways in the chemotactic response to insulin-like growth factor-I (IGF-I) were also examined. METHODS: The roles of PI3-kinase and p42/p44 MAP kinases were assessed using the PI3-kinase inhibitors, wortmannin and LY294002, and an inhibitor of MAP kinase kinase, PD98059. PI3-kinase activity was measured by phosphatidylinositol phosphorylation in anti-phosphotyrosine immunoprecipitates and by thin layer chromatography of phosphorylated products. Phosphorylation was assessed by immunoprecipitation with anti-phosphotyrosine antibodies and Western blotting with FAK-specific antibody. Migration was evaluated in a chemotaxis chamber using polycarbonate filters with an 8-mm pore size. RESULTS: Neither wortmannin nor LY294002 significantly reduced PDGF-BB stimulation of FAK tyrosine phosphorylation, chemotaxis or immunofluorescent staining of focal adhesions in VSMCs. PD98059, a specific inhibitor of MAP kinase activation, did not inhibit FAK tyrosine phosphorylation but markedly inhibited the migratory response of VSMCs to PDGF-BB. IGF-I also stimulated migration of VSMCs, and, relative to the effect of PDGF-BB, induced smaller increases in PI3-kinase and MAP kinase activities. Both wortmannin and PD98059 partially inhibited the migratory response to IGF-I. CONCLUSIONS: PDGF-BB stimulation of both FAK tyrosine phosphorylation and migration in VSMCs are not dependent on activation of PI3-kinase. While PDGF-BB stimulation of FAK tyrosine phosphorylation is not dependent on p42/p44 MAP kinase activation, PDGF-BB and IGF-I both stimulate p42/p44 MAP kinase activity and the chemotactic response to these factors is partially dependent on MAP kinase activation.  (+info)