Acquisition of agonistic properties of nonsteroidal antiandrogens after treatment with oncostatin M in prostate cancer cells. (65/384)

PURPOSE: Interleukin-6 (IL-6), a proinflammatory cytokine the serum andtissue levels of which are elevated in prostate cancer patients, activates the androgen receptor (AR) in a ligand-independent and synergistic manner. Oncostatin M (OSM) is an IL-6 type cytokine that regulates the growth of prostate cancer cells in a paracrine fashion. The present study was designed to investigate the regulation of AR expression and function by OSM, as well as the efficacy of the nonsteroidal antiandrogens hydroxyflutamide and bicalutamide in the inhibition of AR-mediated signal transduction. EXPERIMENTAL DESIGN: Expression of the OSM receptor-beta in the prostate cancer cell lines LNCaP, PC-3, and DU-145 was investigated by reverse transcription-PCR. DU-145 and PC-3 cells were cotransfected with an androgen-responsive gene and AR cDNA. Reporter gene activity was measured after treatment with androgen and/or OSM in the absence or presence of antiandrogens or protein kinase inhibitors. AR expression after OSM treatment was assessed by Western blot. RESULTS: OSM receptor-beta expression was higher in DU-145 and PC-3 than in LNCaP cells. OSM caused ligand-independent activation of the AR in DU-145 cells, and the maximal activation was 62% of that induced by the synthetic androgen methyltrienolone. In the presence of OSM, hydroxyflutamide behaved as an AR agonist. Bicalutamide down-regulated AR activation caused by OSM only at a concentration of 1 microM. The inhibitor of the protein kinase A signaling pathway PKI and dn signal transducers and activators of transcription (STAT) 3 showed no effect on AR activation by OSM. The inhibitor of the MAPK pathway, PD 98059, caused only a minor down-regulation of OSM-induced reporter gene activity. OSM did not change AR expression in DU-145 cells transfected with AR cDNA. CONCLUSIONS: OSM is a member of the IL-6 family of cytokines, which causes ligand-independent activation of the AR without altering receptor expression. In contrast to AR activation by IL-6, nonsteroidal AR antagonists act as agonists in the presence of OSM. This may be attributable to recruitment of different intermediary signal transduction proteins by OSM and IL-6, respectively. The acquisition of agonistic properties of AR blockers in the presence of OSM might compromise use of these drugs in prostate cancer treatment.  (+info)

Pure antiandrogens disrupt the recruitment of coactivator GRIP1 to colocalize with androgen receptor in nuclei. (66/384)

We have used confocal microscopy to elucidate the effects of antiandrogens on nuclear localization of the androgen receptor (AR) with its transcriptional coactivator GRIP1. We show that the agonist-activated AR recruits GRIP1 to colocalize with the receptor in the nucleoplasm. By contrast, AR complexed to the antiandrogens hydroxyflutamide and bicalutamide fails to influence nuclear distribution of GRIP1. Likewise, the non-steroidal antiandrogens prevent the agonist-induced AR-GRIP1 colocalization from occurring. Androgen antagonists affect nuclear redistribution of AR-GRIP1 in a fashion that parallels their effects on the transcriptional activity of AR, in that the pure antagonists block GRIP1-dependent activation of AR function, whereas the mixed antagonist/agonist cyproterone acetate promotes both AR-driven redistribution of GRIP1 and activation of AR by GRIP1.  (+info)

Involvement of androgen receptor in 17beta-estradiol-induced cell proliferation in rat uterus. (67/384)

Although it is known that, in the uterus, estrogen receptor alpha (ERalpha) is involved in proliferation and progesterone receptor in differentiation, the role of the two other gonadal-hormone receptors expressed in the uterus, androgen receptor (AR) and estrogen receptor beta (ERbeta), remains undefined. In this study, the involvement of AR in 17beta-estradiol (E(2))-induced cellular proliferation in the immature rat uterus was investigated. AR levels were low in the untreated immature uterus, but 24 h after treatment of rats with E(2), there was an increase in the levels of AR and of two androgen-regulated genes, IGF-I and Crisp (cysteine-rich secretory protein). As expected, E(2) induced proliferation of luminal epithelial cells. These actions of E(2) were all blocked by both the antiestrogen tamoxifen and the antiandrogen flutamide. The E(2)-induced AR was found by immunohistochemistry to be localized exclusively in the stroma, mainly in the myometrium, where it colocalized with ERalpha but not with ERbeta. ERbeta, detected with two different ERbeta-specific antibodies, was expressed in both stromal and epithelial cells either alone or together with ERalpha. Treatment with E(2) caused down-regulation of ERalpha and ERbeta in the epithelium. The data suggest that, in E(2)-induced epithelial cell proliferation, ERalpha induces stromal AR and AR amplifies the ERalpha signal by induction of IGF-I. Because AR is never expressed in cells with ERbeta, it is unlikely that ERbeta signaling is involved in this pathway. These results indicate an important role for AR in proliferation of the uterus, where estrogen and androgen do not represent separate pathways but are sequential steps in one pathway.  (+info)

Nerve growth factor induces the re-expression of functional androgen receptors and p75(NGFR) in the androgen-insensitive prostate cancer cell line DU145. (68/384)

BACKGROUND: One of the paracrine/autocrine factors regulating prostate growth and differentiation is nerve growth factor (NGF). The role of NGF and its receptors in the prostate, however, remains controversial. We have shown that NGF treatment of human prostate cancer cell lines reduced their tumorigenicity, both in vitro and in vivo. OBJECTIVE: To investigate the involvement of NGF as a differentiation factor in prostate cancer cells. DESIGN: We exposed the androgen-independent/androgen receptor (AR)-negative prostate cancer cell line DU145 to NGF to study whether this neurotrophin could revert DU145 cells to a less malignant phenotype. METHODS: DU145 cells were treated with NGF, then ARs and NGF receptor p75(NGFR) expression and telomerase activity were studied. Finally, we investigated whether re-expression of ARs could restore the androgen sensitivity in this cell line. RESULTS AND CONCLUSIONS: NGF treatment induced a reversion of DU145 cells to a less malignant phenotype, characterized by the re-expression of ARs and p75(NGFR) NGF receptors. Re-expression of ARs restored the androgen sensitivity, as suggested by the fact that exposure to dihydrotestosterone stimulated the growth of NGF-treated DU145 cells. This effect was blocked by androgen antagonist drugs, such as hydroxyflutamide and cyproterone acetate, which also induced apoptotic death of NGF-treated cells. The hypothesis that a differentiation pathway is activated by exogenous NGF in DU145 cells is also supported by findings indicating that NGF-treated DU145 cells expressed a low telomerase activity, as a result of a decrease in human telomerase reverse transcriptase transcription.  (+info)

Evaluation of a 15-day screening assay using intact male rats for identifying antiandrogens. (69/384)

An in vivo screening assay using intact adult male rats has been evaluated for its ability to detect six antiandrogenic compounds via oral administration. The test compounds included cyproterone acetate (CPA), flutamide (FLUT), p,p'-DDE (DDE), di-n-butyl phthalate (DBP), linuron (LIN), and vinclozolin (VCZ). Two of the test compounds (DDE and FLUT) have been previously evaluated in the 15-day intact male assay with compound administration via intraperitoneal injection (ip). For the current studies, male rats were dosed for 15 days via oral gavage and euthanized on the morning of test day 15. The endpoints evaluated included final body and organ weights (liver, thyroid gland, testes, epididymides, prostate, seminal vesicles with fluid, accessory sex gland unit [ASG]), serum hormone concentrations (testosterone [T], estradiol [E2], dihydrotestosterone [DHT], luteinizing hormone [LH], follicle stimulating hormone [FSH], prolactin [PRL], T(3), T(4), and thyroid stimulating hormone[TSH]), and histopathology of the testis, epididymis, and thyroid gland; positive results for each endpoint are described below. In addition, an evaluation of immune system endpoints (humoral immune function, spleen and thymus weights, and spleen cell number) was conducted on a subset of animals dosed with either DDE or FLUT. All six endocrine-active compounds (EACs) increased relative liver weight. FLUT and VCZ caused the typical pattern for an androgen receptor (AR) antagonist, although not all endpoints were statistically significant for VCZ: decreased ASG weights, hormonal alterations (increased T, DHT, LH, and FSH), and induced Leydig cell hypertrophy and/or hyperplasia. CPA caused effects consistent with its mixed AR antagonist/progesterone receptor agonist activity: it decreased ASG weights, caused hormonal alterations (increased T and E2; decreased FSH), and caused spermatid retention. DBP, a compound with antiandrogen-like activity via a nonreceptor mediated mechanism, caused hormonal alterations (decreased T, DHT, and E2; increased LH, FSH, and PRL) and induced general testicular degeneration. LIN, a weak AR antagonist, decreased ASG weights, caused hormonal alterations (decreased T, DHT, and LH; increased E2), and caused spermatid retention. Unlike the other AR antagonists evaluated, DDE, a weak AR antagonist, did not alter reproductive parameters. All six antiandrogens caused some effects on thyroid parameters, although only CPA, DDE, and VCZ caused results consistent with a potential thyroid-modulator. FLUT and DDE did not alter the primary humoral immune response to SRBC, spleen or thymus weights, or spleen cell number. In the current study, 5 of the six test substances were identified as endocrine-active substances consistent with their known/proposed mechanism(s) of action. The effects that were observed in the current study via oral (gavage) compound administration were similar to the responses that were observed by the ip route in previous studies for DDE and FLUT. This report, in addition to the > 20 compounds that have already been examined using the 15-day intact male assay, supports this assay as a viable screening assay for detecting EACs, and also illustrates that the ability to identify EACs using the intact male assay will be equivalent regardless of the route of compound administration.  (+info)

Phase II study to evaluate combining gemcitabine with flutamide in advanced pancreatic cancer patients. (70/384)

A phase II study was undertaken to determine the safety of combining flutamide with gemcitabine, with response rate being the primary end point. Twenty-seven patients with histologically proven, previously untreated, unresectable pancreatic adenocarcinoma received gemcitabine, 1 g m(-2) intravenously on days 1, 8 and 15 of a 28 day cycle, and flutamide 250 mg given orally three times daily. Treatment was halted if there was unacceptable toxicity, or evidence of disease progression. Toxicity was documented every cycle. Tumour assessment was undertaken after cycles 2 and 4, and thereafter at least every additional four cycles. One hundred and seventeen cycles of treatment were administered, median four cycles per patient (range 1-18). Gemcitabine combined with flutamide was well tolerated, with most toxicities being recorded as grade 1 or 2 and only nine treatment cycles associated with grade 3 toxicity. The most frequent toxicity was myelosuppression. One case of transient jaundice was recorded. The commonest symptomatic toxicity was nausea and vomiting. The response rate was 15% (four partial responses), median survival 6 months and 22% of patients were alive at 1 year. These results suggest antitumour activity of the combination therapy to be equivalent to single agent gemcitabine.  (+info)

Modulation of the onset of postnatal development of H(+)-ATPase-rich cells by steroid hormones in rat epididymis. (71/384)

Vacuolar type H(+)-ATPase is involved in lumenal acidification of the epididymis. This protein is highly expressed in narrow and clear cells where it is located in the apical pole, and it contributes to proton secretion into the lumen. We have previously shown that in rats, epididymal cells rich in H(+)ATPase appear during postnatal development and reach maximal numbers at 3-4 wk of age. The factors that regulate the appearance of these cells have not been investigated, but androgens, estrogens, or both may be involved. This study examined whether neonatal administration of estrogens (diethylstilbestrol [DES] or ethinyl estradiol) or an antiandrogen (flutamide), or the suppression of androgen production via administration of a GnRH antagonist (GnRHa), was able to alter the appearance of cells rich in H(+)-ATPase in the rat epididymis when assessed at age 25 days. Surprisingly, all of these treatments were able to significantly reduce the number of H(+)-ATPase positive cells; this was determined by immunofluorescence and confirmed by Western blotting. In contrast, neonatal coadministration of DES and testosterone maintained the expression of H(+)-ATPase in the epididymis at Day 25 despite the high level of concomitant estrogen exposure. These findings indicate that androgens, acting via the androgen receptor, are essential for the normal development of epididymal cells rich in H(+)-ATPase, and that treatments that interfere directly or indirectly with androgen production (GnRHa, DES) or action (flutamide, DES) will result in reduced expression of H(+)-ATPase. Our findings do not exclude the possibility that estrogens can directly suppress the postnatal development of cells in the epididymis that are rich in H(+)-ATPase, but if this is the case, this suppression can be prevented by testosterone administration.  (+info)

Antiandrogenic effects in vitro and in vivo of the fungicide prochloraz. (72/384)

The commonly used imidazole fungicide prochloraz was tested for antiandrogenic effects in vitro and in vivo. Prochloraz, but not the metabolites 2,4,6-trichlorophenoxyacetic acid or 2,4,6-trichlorophenol, inhibited the R1881-induced response in an androgen receptor reporter gene assay. In the Hershberger assay, prochloraz exposure at all dose levels (50, 100, and 200 mg/kg) given orally to castrated testosterone (T)-treated males markedly reduced weights of ventral prostate, seminal vesicles, musc. levator ani/bulbocavernosus, and bulbourethral gland. These effects were accompanied by an increase in LH and a reduction of the T(4) and TSH level. The effects on seminal vesicles, LH, T(4), and TSH were also evident in intact prochloraz-exposed young adult rats. Body weights were unaffected whereas liver weights were increased in prochloraz-treated animals. Changes in androgen-regulated gene expression were determined in ventral prostates by real-time RT-PCR. A pronounced decrease of ornithin decarboxylase and PBP C3 mRNA levels was observed for both prochloraz and flutamide. These results indicate that prochloraz antagonizes the peripheral androgen receptors resulting in decreased growth of androgen-dependent tissues and that it antagonizes central androgen receptors blocking the negative feed-back mechanism of testosterone resulting in increased LH secretion from the pituitary. The antiandrogenic effects of prochloraz were in many ways qualitatively comparable, although weaker, to the effects of flutamide. However, differential effects on levels of FSH, T(4), and TSH indicate that other modes of action apart from the pure AR antagonism might play a role in vivo.  (+info)