(1/1011) Block by fluoxetine of volume-regulated anion channels.

1. We have used the whole-cell patch clamp technique to study the effect of fluoxetine, a commonly used antidepressant drug, on the volume-regulated anion channel (VRAC) in calf pulmonary artery endothelial (CPAE) cells. We also examined its effects on other Cl- channels, i.e. the Ca2(+)-activated Cl- current (I(Cl,Ca) and the cystic fibrosis transmembrane conductance regulator (CFTR) to assess the specificity of this compound for VRAC. 2. At pH 7.4 fluoxetine induced a fast and reversible block of the volume-sensitive chloride current (I(Cl,swell)), with a Ki value of 6.0+/-0.5 microM (n = 6-9). The blocking efficiency increased with increasing extracellular pH (Ki= 0.32+/-0.01 microM at pH 8.8, n = 3-9), indicating that the blockade is mediated by the uncharged form of fluoxetine. 3. Fluoxetine inhibited Ca2(+)-activated Cl(-) currents, I(Cl,Ca), activated by loading CPAE cells via the patch pipette with 1000 nM free Ca2+ (Ki= 10.7+/-1.6 microm at pH 7.4, n=3-5). The CFTR channel, transiently transfected in CPAE cells, was also inhibited with a Ki value of 26.9+/-9.4 microM at pH 7.4 (n = 3). 4. This study describes for the first time the effects of fluoxetine on anion channels. Our data reveal a potent block of VRAC at fluoxetine concentrations close to plasma concentrations. The results suggest a hydrophobic interaction with high affinity between uncharged fluoxetine and volume-activated chloride channels. Ca(2+)-activated Cl- currents and CFTR are also blocked by fluoxetine, revealing a novel characteristic of the drug as a chloride channel modulator.  (+info)

(2/1011) Incidence and risk factors for hyponatraemia following treatment with fluoxetine or paroxetine in elderly people.

AIMS: To establish the incidence, time course and risk factors of hyponatraemia complicating treatment with fluoxetine or paroxetine in an elderly population. METHODS: Retrospective descriptive and case control study in an inpatient/outpatient assessment and rehabilitation service for people aged 65 years and over. Fourteen elderly patients with hyponatraemia complicating treatment with fluoxetine or paroxetine, matched with 56 controls drawn from 845 patients treated with fluoxetine or paroxetine over 3.5 years. No other SSRI antidepressants were used over the study period. RESULTS: The incidence of hyponatraemia was 4.7/1000 people treated/year (6.3/1000 for fluoxetine and 3.5/1000 for paroxetine). Hyponatraemia was detected at a median 13.5 (mean 18.6, range 4-64) days after commencing the drug. Mean (95% confidence intervals) body weights were lower in cases at 53.0 (95% CI 46.5-59.5) kg compared with controls at 64.5 (95% CI 60.1-68.4) kg (P<0.01). 71% of cases were women compared with 45% of controls (P=0.07) but the effect of gender was confounded by body weight. There were trends for cases to be older (odds ratio 1.10: 95% CI 0.99, 1.23) and lighter (odds ratio 0.92, 95% CI 0.86, 0.99). CONCLUSIONS: Approximately 1 in 200 elderly people treated per year with fluoxetine or paroxetine developed complicating hyponatraemia. Low body weight was a particular risk factor. Most cases occurred within 3 weeks of treatment.  (+info)

(3/1011) Effects of fluoxetine on the polysomnogram in outpatients with major depression.

This study investigated the effects of open-label fluoxetine (20 mg/d) on the polysomnogram (PSG) in depressed outpatients (n = 58) who were treated for 5 weeks, after which dose escalation was available (< or = 40 mg/d), based on clinical judgment. Thirty-six patients completed all 10 weeks of acute phase treatment and responded (HRS-D < or = 10). PSG assessments were conducted and subjective sleep evaluations were gathered at baseline and at weeks 1, 5, and 10. Of the 36 subjects who completed the acute phase, 17 were reevaluated after 30 weeks on continuation phase treatment and 13 after approximately 7 weeks (range 6-8 weeks) following medication discontinuation. Acute phase treatment in responders was associated with significant increases in REM latency, Stage 1 sleep, and REM density, as well as significant decreases in sleep efficiency, total REM sleep, and Stage 2 sleep. Conversely, subjective measures of sleep indicated a steady improvement during acute phase treatment. After fluoxetine was discontinued, total REM sleep and sleep efficiency were found to be increased as compared to baseline.  (+info)

(4/1011) Characteristics of drug interactions with recombinant biogenic amine transporters expressed in the same cell type.

We characterized the effects of drugs on the uptake of [3H]neurotransmitter by and the binding of [125I](3beta-(4-iodophenyl)tropane-2beta-carboxylic acid methyl ester ([125I]RTI-55) to the recombinant human dopamine (hDAT), serotonin (hSERT), or norepinephrine (hNET) transporters stably expressed in human embryonic kidney 293 cells. RTI-55 had similar affinity for the hDAT and hSERT and lower affinity for hNET (Kd = 1. 83, 0.98, and 12.1 nM, respectively). Kinetic analysis of [125I]RTI-55 binding indicated that the dissociation rate (k-1) was significantly lower for hSERT and the association rate (k+1) was significantly lower for hNET compared with the hDAT. The potency of drugs at blocking [3H]neurotransmitter uptake was highly correlated with potency at blocking radioligand binding for hDAT and hSERT. Substrates were more potent at the inhibition of [3H]neurotransmitter uptake than radioligand binding. The potency of drugs was highly correlated between displacement of [3H]nisoxetine (Kd = 6.0 nM) and [125I]RTI-55 from the hNET, suggesting that these radioligands recognize similar sites on the transporter protein. The correlation observed between inhibitory potency for uptake and binding of either ligand at the hNET was lower than correlations between uptake and binding for hDAT and hSERT. The present results indicate that the cocaine analog [125I]RTI-55 has unique binding properties at each of the transporters and that the use of recombinant transporters expressed by a single cell type can provide a powerful screening tool for drugs interacting with biogenic amine transporters, such as possible cocaine antagonists.  (+info)

(5/1011) Thermogenic effects of sibutramine and its metabolites.

1. The thermogenic activity of the serotonin and noradrenaline reuptake inhibitor sibutramine (BTS 54524; Reductil) was investigated by measuring oxygen consumption (VO2) in rats treated with sibutramine or its two pharmacologically-active metabolites. 2. Sibutramine caused a dose-dependent rise in VO2, with a dose of 10 mg kg(-1) of sibutramine or its metabolites producing increases of up to 30% that were sustained for at least 6 h, and accompanied by significant increases (0.5-1.0 degrees C) in body temperature. 3. Based on the accumulation in vivo of radiolabelled 2-deoxy-[3H]-glucose, sibutramine had little or no effect on glucose utilization in most tissues, but caused an 18 fold increase in brown adipose tissue (BAT). 4. Combined high, non-selective doses (20 mg kg(-1)) of the beta-adrenoceptor antagonists, atenolol and ICI 118551, inhibited completely the VO2 response to sibutramine, but the response was unaffected by low, beta1-adrenoceptor-selective (atenolol) or beta2-adrenoceptor-selective (ICI 118551) doses (1 mg kg(-1)). 5. The ganglionic blocking agent, chlorisondamine (15 mg kg(-1)), inhibited completely the VO2 response to the metabolites of sibutramine, but had no effect on the thermogenic response to the beta3-adrenoceptor-selective agonist BRL 35135. 6. Similar thermogenic responses were produced by simultaneous injection of nisoxetine and fluoxetine at doses (30 mg kg(-1)) that had no effect on VO2 when injected individually. 7. It is concluded that stimulation of thermogenesis by sibutramine requires central reuptake inhibition of both serotonin and noradrenaline, resulting in increased efferent sympathetic activation of BAT thermogenesis via beta3-adrenoceptor, and that this contributes to the compound's activity as an anti-obesity agent.  (+info)

(6/1011) 5-HT1A receptor function in normal subjects on clinical doses of fluoxetine: blunted temperature and hormone responses to ipsapirone challenge.

Serotonergic receptors of the 5-HT1A subtype have been suggested to play a pivotal role in the mechanism of action of antidepressant drugs, including specific serotonin reuptake inhibitors (SSRIs). We examined the effect of clinical doses of the SSRI, fluoxetine, on 5-HT1A receptor function in 15 normal volunteers. Hypothermic and hormone responses to the 5-HT1A receptor agonist, ipsapirone (0.3 mg per kg, per os) were examined after two weeks of placebo and again, after the subjects had been receiving fluoxetine for four weeks. On fluoxetine, the hypothermic response to ipsapirone was significantly blunted, as were ACTH, cortisol and growth hormone release. Ipsapirone plasma levels were significantly increased by fluoxetine but a pharmacokinetic effect could not have accounted for the observed blunting of 5-HT1A receptor mediated effects. These findings confirm and extend previous observations in rodents and humans and indicate that both post-synaptic 5-HT1A receptors in the hypothalamus, which mediate hormone responses to 5-HT1A agonists, and pre-synaptic 5-HT1A receptors which (putatively) mediate the hypothermic response, are rendered subsensitive by chronic SSRI administration. Since fluoxetine did not have significant effects on mood and other psychological variables in these subjects, alterations in 5-HT1A receptor function induced by SSRIs may have psychotropic relevance only in the context of existing perturbations of serotonergic function which underlie the psychopathological states in which these drugs are therapeutically effective.  (+info)

(7/1011) Fluoxetine inhibits L-type Ca2+ and transient outward K+ currents in rat ventricular myocytes.

The most common cardiovascular side effects of antidepressants are cardiac arrhythmias and orthostatic hypotension. Little is known, however, about the mechanisms by which these adverse reactions may occur, especially with regard to newer drugs such as fluoxetine. We hypothesized that these side effects may have an electrophysiological basis at the level of the cardiac myocyte. Thus, we investigated the effects of fluoxetine and other antidepressants on action potentials and ionic currents of rat ventricular myocytes using the amphotericin B perforated patch clamp technique. Fluoxetine (10 microM) prolonged the action potential duration (APD50) to 146.7 +/- 12.9% of control value without altering resting membrane potential. Fluoxetine and sertraline potently inhibited the L-type Ca2+ current (IC50 = 2.82 and 2.31 microM, respectively), but did not significantly modify the steady-state inactivation. Amitriptyline and imipramine had similar, but slightly weaker, effects (IC50 = 3.75 and 4.05 microM, respectively). Fluoxetine attenuated the peak transient outward K+ current and also altered current kinetics, as shown by accelerated decay. Fluoxetine did not change the voltage-dependence of the steady-state inactivation. Sertraline, amitriptyline and imipramine inhibited the transient outward K+ current with potencies very similar to fluoxetine. In contrast to the other antidepressants tested, trazodone weakly inhibited the Ca2+ and K+ currents and moclobemide had no detectable effect. Our comparative pharmacology data suggest that selective serotonin reuptake inhibitors, such as fluoxetine, are as potent as tricyclic antidepressants in inhibiting L-type Ca2+ and transient outward K+ currents. These inhibitory effects may contribute to cardiovascular complications such as arrhythmias and orthostatic hypotension.  (+info)

(8/1011) Serotonin reuptake inhibitor, fluoxetine, dilates isolated skeletal muscle arterioles. Possible role of altered Ca2+ sensitivity.

1. Inhibitors of serotonin reuptake in the central nervous system, such as fluoxetine, may also affect the function of vascular tissues. Thus, we investigated the effect of fluoxetine on the vasomotor responses of isolated, pressurized arterioles of rat gracilis muscle (98 +/- 4 microns in diameter at 80 mmHg perfusion pressure). 2. We have found that increasing concentrations of fluoxetine dilated arterioles up to 155 +/- 5 microns with an EC50 of 2.5 +/- 0.5 x 10(-6) M. 3. Removal of the endothelium, application of 4-aminopyridine (4-AP, an inhibitor of aminopyridine sensitive K+ channels), or use of glibenclamide (an inhibitor of ATP-sensitive K+ channels) did not affect the vasodilator response to fluoxetine. 4. In the presence of 10(-6), 2 x 10(-6) or 10(-5) M fluoxetine noradrenaline (NA, 10(-9)-10(-5) M) and 5-hydroxytryptamine (5-HT, 10(-9)-10(-5)M)-induced constrictions were significantly attenuated resulting in concentration-dependent parallel rightward shifts of their dose-response curves (pA2 = 6.1 +/- 0.1 and 6.9 +/- 0.1, respectively). 5. Increasing concentrations of Ca2+ (10(-4) 3 x 10(-2) M) elicited arteriolar constrictions (up to approximately 30%), which were markedly reduced by 2 x 10(-6)M fluoxetine, whereas 10(-5)M fluoxetine practically abolished these responses. 6. In conclusion, fluoxetine, elicits substantial dilations of isolated skeletal muscle arterioles, a response which is not mediated by 4-AP- and ATP-sensitive K+ channels or endothelium-derived dilator factors. The findings that fluoxetine had a greater inhibitory effect on Ca2+ elicited constrictions than on responses to NA and 5-HT suggest that fluoxetine may inhibit Ca2+ channel(s) or interfere with the signal transduction by Ca2+ in the vascular smooth muscle cells.  (+info)