Immunization with the Candida albicans membrane fraction and in combination with fluconazole protects against systemic fungal infections. (65/1523)

We studied the immunogenicity of a membrane fraction prepared from Candida albicans cells called C. albicans membrane antigen (CMA). The present study revealed that CMA immunization has antifungal activity in mouse models of systemic fungal infection. Immunization of mice by subcutaneous injections of CMA with incomplete Freund adjuvant induced resistance to infections caused not only by C. albicans but also by Aspergillus fumigatus. The level of resistance to candidiasis was as high as that induced by whole-cell immunization. The acquired resistance to candidiasis in the mice immunized with CMA was not diminished by immunosuppressive treatment with cyclophosphamide. The level of resistance to fungal infections was superior to that given by fluconazole (FLC) treatment alone and highly enhanced by the combination with FLC. When CD4(+) cells in CMA-immunized mice were depleted by a monoclonal antibody, the antifungal activity induced by the combination of CMA and FLC was significantly reduced. These results indicate that immunization with CMA is useful for preventing systemic fungal infections and in combination with FLC for increasing resistance after infection.  (+info)

In vitro susceptibility studies of Cryptococcus neoformans isolated from patients with no clinical response to amphotericin B therapy. (66/1523)

The in vitro activities of three antifungal drugs alone and in combination were evaluated against five isolates of Cryptococcus neoformans using time-kill curves (TKC). The isolates were from AIDS patients who had either died or had failed to show a clinical response during amphotericin B (AMB) treatment. AMB, fluconazole (FCZ) and flucytosine (5FC), and combinations of the drugs (AMB plus 5FC, AMB plus rifampicin (RIF) and FCZ plus 5FC), were evaluated. With all five isolates AMB did not show fungicidal activity; instead, a persistent or tolerant effect was observed. Combinations of AMB plus 5FC and AMB plus RIF showed a clear synergic effect, except for one isolate tested with AMB plus RIF. In contrast, the FCZ plus 5FC combination did not inhibit growth of any isolate.  (+info)

Host immune reactivity determines the efficacy of combination immunotherapy and antifungal chemotherapy in candidiasis. (67/1523)

In immunocompetent mice with candidiasis, successful therapy with amphotericin B and fluconazole relies on the induction of protective, T helper (Th) type 1 responses, an effect potentiated by concomitant interleukin (IL)-4 neutralization. To assess the therapeutic efficacy of combined treatments with antifungals and immunomodulators in conditions of immunosuppression, leukopenic or neutropenic mice with disseminated candidiasis were treated with amphotericin B or fluconazole alone or in combination with soluble IL-4 receptor (sIL-4R) or recombinant (r) IL-12 or IL-10 neutralizing monoclonal antibodies. We found that (1) the synergistic effect of sIL-4R and antifungals is retained in immunocompromised mice; (2) synergism with amphotericin B was superior to that with fluconazole, particularly in leukopenic mice; (3) rIL-12 synergized with fluconazole in neutropenic mice; and (4) IL-10 neutralization was always of limited efficacy. This study indicates that the therapeutic efficacy of antifungals is differentially potentiated by cytokines or cytokine antagonists and is influenced by host immune reactivity.  (+info)

Synergistic antifungal activities of bafilomycin A(1), fluconazole, and the pneumocandin MK-0991/caspofungin acetate (L-743,873) with calcineurin inhibitors FK506 and L-685,818 against Cryptococcus neoformans. (68/1523)

Cryptococcus neoformans is an opportunistic fungal pathogen that causes life-threatening infections of the central nervous system. Existing therapies include amphotericin B, fluconazole, and flucytosine, which are limited by toxic side effects and the emergence of drug resistance. We recently demonstrated that the protein phosphatase calcineurin is required for growth at 37 degrees C and virulence of C. neoformans. Because calcineurin is the target of potent inhibitors in widespread clinical use, cyclosporine and FK506 (tacrolimus), it is an attractive drug target for novel antifungal agents. Here we have explored the synergistic potential of combining the calcineurin inhibitor FK506 or its nonimmunosuppressive analog, L-685,818, with other antifungal agents and examined the molecular basis of FK506 action by using genetically engineered fungal strains that lack the FK506 target proteins FKBP12 and calcineurin. We demonstrate that FK506 exhibits marked synergistic activity with the H(+)ATPase inhibitor bafilomycin A(1) via a novel action distinct from calcineurin loss of function. FK506 also exhibits synergistic activity with the pneumocandin MK-0991/caspofungin acetate (formerly L-743,873), which targets the essential beta-1,3 glucan synthase, and in this case, FK506 action is mediated via FKBP12-dependent inhibition of calcineurin. Finally, we demonstrate that FK506 and fluconazole have synergistic activity that is independent of both FKBP12 and calcineurin and may involve the known ability of FK506 to inhibit multidrug resistance pumps, which are known to export azoles from fungal cells. In summary, our studies illustrate the potential for synergistic activity of a variety of different drug combinations and the power of molecular genetics to define the mechanisms of drug action, as well as identify a novel action of FK506 that could have profound implications for therapeutic or toxic effects in other organisms, including humans.  (+info)

Evolution of drug resistance in experimental populations of Candida albicans. (69/1523)

Adaptation to inhibitory concentrations of the antifungal agent fluconazole was monitored in replicated experimental populations founded from a single, drug-sensitive cell of the yeast Candida albicans and reared over 330 generations. The concentration of fluconazole was maintained at twice the MIC in six populations; no fluconazole was added to another six populations. All six replicate populations grown with fluconazole adapted to the presence of drug as indicated by an increase in MIC; none of the six populations grown without fluconazole showed any change in MIC. In all populations evolved with drug, increased fluconazole resistance was accompanied by increased resistance to ketoconazole and itraconazole; these populations contained ergosterol in their cell membranes and were amphotericin sensitive. The increase in fluconazole MIC in the six populations evolved with drug followed different trajectories, and these populations achieved different levels of resistance, with distinct overexpression patterns of four genes involved in azole resistance: the ATP-binding cassette transporter genes, CDR1 and CDR2; the gene encoding the target enzyme of the azoles in the ergosterol biosynthetic pathway, ERG11; and the major facilitator gene, MDR1. Selective sweeps in these populations were accompanied by additional genomic changes with no known relationship to drug resistance: loss of heterozygosity in two of the five marker genes assayed and alterations in DNA fingerprints and electrophoretic karyotypes. These results show that chance, in the form of mutations that confer an adaptive advantage, is a determinant in the evolution of azole drug resistance in experimental populations of C. albicans.  (+info)

Evaluation of a capacitance method for direct antifungal susceptibility testing of yeasts in positive blood cultures. (70/1523)

The feasibility of using a capacitance method (CM) for direct antifungal susceptibility testing of yeasts in positive blood cultures was evaluated. The CM used the same test conditions as those recommended by the National Committee for Clinical Laboratory Standards. After direct inoculation of positive culture broths into module wells (Bactometer; bioMerieux, Inc., Hazelwood, Mo.), the end-point determination was made by monitoring the capacitance change in the culture broths with Bactometer. The MIC of amphotericin B was the lowest concentration at which yeast growth was completely inhibited, while the MICs of ketoconazole, flucytosine, and fluconazole were the concentrations at which a >/=80% reduction in capacitance change was observed. The MICs of the four drugs against each blood isolate obtained on subculture plates were also determined by the macrodilution method. For 51 positive blood cultures tested, the percent agreement (+/-2 log(2) dilutions) between the CM and the macrodilution method were as follows: amphotericin B (98%), ketoconazole (92%), flucytosine (84%), and fluconazole (96%). The CM was further used for breakpoint susceptibility testing of fluconazole (8 and 64 microg/ml) and flucytosine (4 and 32 microg/ml) against yeasts in positive blood cultures. After testing of 74 specimens by the CM, flucytosine and fluconazole produced one (1.4%) major error and two (2.8%) minor errors, respectively. All yeasts that displayed resistance to flucytosine or fluconazole were detected within 24 h after direct inoculation of the positive broths into Bactometer. The CM may be useful for the rapid detection of antifungal resistance in positive blood cultures containing yeasts.  (+info)

Clonal and spontaneous origins of fluconazole resistance in Candida albicans. (71/1523)

The genotypes and susceptibilities to fluconazole of 78 strains of the human pathogenic yeast Candida albicans were compared. The strains comprised two sets of samples from Durham, N.C.: one from patients infected with the human immunodeficiency virus (HIV) and the other from healthy volunteers. For each strain, the MIC of fluconazole was determined by the standard National Committee for Clinical Laboratory Standards protocol. Genotypes were determined by PCR fingerprinting with five separate primers. The analysis revealed little evidence for genotypic clustering according to HIV status or body site. However, a small group of fluconazole-resistant strains isolated from patients infected with HIV formed a distinct cluster. In addition, two fluconazole-resistant strains were isolated from individuals who never took fluconazole, one from a patient infected with HIV and the other from a healthy person. The results suggest both clonal and spontaneous origins of fluconazole resistance in C. albicans.  (+info)

Anti-idiotypic antibodies in patients with different clinical forms of paracoccidioidomycosis. (72/1523)

Paracoccidioidomycosis (PCM) is the most prevalent systemic mycosis in Latin America. Patients with PCM show a wide spectrum of clinical and pathological manifestations depending on both host and pathogen factors. Two clinical forms of the disease are recognized: the acute or juvenile form and the chronic or adult form. The major antigenic component of the parasite is a glycoprotein of 43 kDa (gp43). All patient sera present antibodies against gp43 (anti-gp43) and, as demonstrated before by our group, spontaneous anti-idiotypic (anti-Id) antibodies (Ab2) can be detected in patient sera with high titers of anti-gp43. Since it has been postulated that anti-Id antibodies may have a modulating function, we decided to purify and characterize anti-Id antibodies in this system. The possible correlation of Ab2 titers with different clinical forms of disease was also verified. Results showed that purified human anti-Id antibodies (human Ab2) recognized specifically the idiotype of some murine monoclonal anti-gp43 (17c and 3e) but not others (40.d7, 27a, and 8a). Spontaneous anti-Id antibodies were found in all clinical forms of disease. The majority of patients (88%, n = 8) with the acute form of PCM had high titers of Ab2. However, among patients with the multifocal chronic form of the disease, only 29% (n = 14) had high titers of Ab2; 70% (n = 10) of patients with the unifocal chronic form had low titers of Ab2. A correlation between Ab2 titers and anti-gp43 titers was observed before and during antimycotic treatment. Our results suggest that titers of anti-Id antibodies correlate with the severity of PCM in humans.  (+info)