Duplication and adaptive evolution of the chalcone synthase genes of Dendranthema (Asteraceae). (33/3713)

Chalcone synthase (CHS) is a key enzyme in the biosynthesis of flavonoids, which are important for the pigmentation of flowers and act as attractants to the pollinators. Genes encoding CHS constitute a multigene family in which the copy number varies among plant species and functional divergence appears to have occurred repeatedly. Plants of the Dendranthema genus have white, yellow, and pink flowers, exhibiting considerable variation in flower color. In this article, 18 CHS genes from six Dendranthema species were sequenced. Two of them were found to be pseudogenes. The functional Dendranthema CHS genes formed three well-supported subfamilies: SF1, SF2, and SF3. The inferred phylogeny of the CHS genes of Dendranthema and Gerbera suggests that those genes originated as a result of duplications before divergence of these two genera, and the function of Dendranthema CHS genes have diverged in a similar fashion to the Gerbera CHS genes; i.e., the genes of SF1 and SF3 code for typical CHS enzymes expressed during different stages of development, whereas the genes of SF2 code for another enzyme that is different from CHS in substrate specificity and reaction. Relative rate tests revealed that the Dendranthema CHS genes significantly deviated from clocklike evolution at nonsynonymous sites. Maximum likelihood analysis showed that the nonsynonymous-synonymous (omega = d(N)/d(S)) rate ratio for the lineage ancestral to SF2 was much higher than for other lineages, with some sites having a ratio well above one. Positive selective pressure appears to have driven the divergence of SF2 from SF1 and SF3.  (+info)

Does reflection polarization by plants influence colour perception in insects? Polarimetric measurements applied to a polarization-sensitive model retina of Papilio butterflies. (34/3713)

Using imaging polarimetry, we have measured some typical reflection-polarization patterns of plant surfaces (leaves and flowers) under different illuminations. Using a quantitative model to determine photon absorptions in the weakly polarization-sensitive (PS approximately 2) photoreceptors of Papilio butterflies, we have calculated the influence of reflection polarization on the colours of leaves and flowers perceived by PAPILIO: Compared with a retina containing polarization-blind colour receptors, the colour loci of specularly reflecting and, thus, strongly polarizing areas on a plant are slightly shifted, which could cause the perception of false colours. However, the colour of specularly reflecting surfaces is strongly masked by white glare, which may prevent the perception of polarization-induced hue shifts. Although the perception of polarizational false colours by Papilio butterflies was previously demonstrated with artificial, strongly colour-saturated and totally linearly polarized stimuli, we expect that the weak polarization sensitivity of Papilio photoreceptors hardly influences colour perception under natural conditions.  (+info)

Molecular phylogeny of Subtribe Artemisiinae (Asteraceae), including Artemisia and its allied and segregate genera. (35/3713)

BACKGROUND: Subtribe Artemisiinae of Tribe Anthemideae (Asteraceae) is composed of 18 largely Asian genera that include the sagebrushes and mugworts. The subtribe includes the large cosmopolitan, wind-pollinated genus Artemisia, as well as several smaller genera and Seriphidium, that altogether comprise the Artemisia-group. Circumscription and taxonomic boundaries of Artemisia and the placements of these small segregate genera is currently unresolved. RESULTS: We constructed a molecular phylogeny for the subtribe using the internal transcribed spacers (ITS) of nuclear ribosomal DNA analyzed with parsimony, likelihood, and Bayesian criteria. The resulting tree is comprised of three major clades that correspond to the radiate genera (e.g., Arctanthemum and Dendranthema), and two clades of Artemisia species. All three clades have allied and segregate genera embedded within each. CONCLUSIONS: The data support a broad concept of Artemisia s.l. that includes Neopallasia, Crossostephium, Filifolium, Seriphidium, and Sphaeromeria. However, the phylogeny excludes Elachanthemum, Kaschgaria, and Stilnolepis from the Artemisia-group. Additionally, the monophyly of the four subgenera of Artemisia is also not supported, with the exception of subg. Dracunculus. Homogamous, discoid capitula appear to have arisen in parallel four to seven times, with the loss of ray florets. Thus capitular morphology is not a reliable taxonomic character, which traditionally has been one of the defining characters.  (+info)

The genetics of mirror-image flowers. (36/3713)

Conspicuous asymmetries in forms that are polymorphic within a species can be genetically or environmentally determined. Here, we present a genetic analysis of the inheritance of dimorphic enantiostyly, a sexual polymorphism in which all flowers on a plant have styles that are consistently deflected either to the left or the right side of the floral axis. Using Heteranthera multiflora (Pontederiaceae), a short-lived herb, we conducted crosses within and between left- and right-styled plants and scored progeny ratios of the style morphs in F(1), F(2) and F(3) generations. Crosses conducted in the parental generation between morphs or right-styled plants resulted in right-styled progeny, whereas crosses between left-styled plants resulted in left-styled progeny. When putative heterozygous F(1) plants were selfed, the resulting F(2) segregation ratios were not significantly different from a 3 : 1 ratio for right- and left-styled plants. Crosses between left- and right-styled plants in the F(2) generation yielded F(3) progeny with either a 1 : 1 ratio of left- and right-styled plants or right-styled progeny. Our results are consistent with a model in which a single Mendelian locus with two alleles, with the right-styled allele (R) dominant to the left-styled allele (r), governs stylar deflection. The simple inheritance of dimorphic enantiostyly has implications for the evolution and maintenance of this unusual sexual polymorphism.  (+info)

Changes in flower coloration and sepal anthocyanins of Cyanic delphinium cultivars during flowering. (37/3713)

The changes in flower color related to sepal pigmentation of cyanic Delphinium cultivars were investigated during anthesis. The sepal hues of the purple and blue flowered varieties observed on the initial day of unfurling had changed with a decrease in hue angle three days after anthesis. In both the purple and blue cultivars, violdelphin (3) was the major component on day one of anthesis, and the chromaticity improved with increasing sepal concentrations of violdelphin (3) and cyanodelphin (4) after three days of unfurling. The flower hue was dominated by the constitution of acylated anthocyanins, and the chromaticity was ordered by the sepal concentration. The biosynthesis of cyanodelphin (4) from violdelphin (3) was postulated since an increase in the sepal concentration of cyanodelphin (4) was accompanied by a decrease in violdelphin (3). Acylation of the anthocyanins was initiated by an increase in the respective possible precursors, tulipanin (2) and violdelphin (3), to subsequently synthesize violdelphin (3) and cyanodelphin (4) during flowering.  (+info)

Rose scent: genomics approach to discovering novel floral fragrance-related genes. (38/3713)

For centuries, rose has been the most important crop in the floriculture industry; its economic importance also lies in the use of its petals as a source of natural fragrances. Here, we used genomics approaches to identify novel scent-related genes, using rose flowers from tetraploid scented and nonscented cultivars. An annotated petal EST database of approximately 2100 unique genes from both cultivars was created, and DNA chips were prepared and used for expression analyses of selected clones. Detailed chemical analysis of volatile composition in the two cultivars, together with the identification of secondary metabolism-related genes whose expression coincides with scent production, led to the discovery of several novel flower scent-related candidate genes. The function of some of these genes, including a germacrene D synthase, was biochemically determined using an Escherichia coli expression system. This work demonstrates the advantages of using the high-throughput approaches of genomics to detail traits of interest expressed in a cultivar-specific manner in nonmodel plants. EST sequences were submitted to the GenBank database (accession numbers BQ 103855 to BQ 106728).  (+info)

Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in petunia. (39/3713)

TAZ1 (TAPETUM DEVELOPMENT ZINC FINGER PROTEIN1; renamed from PEThy; ZPT3-2) cDNA was first isolated as an anther-specific cDNA from petunia. Here, we report a functional characterization that includes analysis of spatial and temporal expression profiles and examination of anther phenotypes in TAZ1-silenced plants. TAZ1 showed a biphasic expression pattern. In the premeiotic phase, TAZ1 transcripts were found to accumulate in all cell types of the anther except the tapetum and gametophytic tissues, whereas the postmeiotic phase of anther development was characterized by expression exclusively in the tapetum. Silencing of TAZ1 by cosuppression resulted in aberrant development and precocious degeneration of the tapetum, followed by extensive microspore abortion that started soon after their release from pollen tetrads. A few pollen grains that survived showed reduced flavonol accumulation, defects in pollen wall formation, and poor germination rates. This study demonstrates an essential role for TAZ1 in the postmeiotic phase of tapetum development.  (+info)

Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. (40/3713)

Vernalization, the promotion of flowering by a prolonged period of low temperature, results in repression of the floral repressor FLOWERING LOCUS C (FLC) and in early flowering. This repression bears the hallmark of an epigenetic event: the low expression state is maintained over many cell division cycles, but expression is derepressed in progeny. We show that the two stages of the response of FLC to vernalization, the repression of FLC and the maintenance of the repression during growth at normal temperatures after vernalization, are mediated through different regions of the FLC gene. Both promoter and intragenic regions are required for the responses. We also identify a 75-bp region in the FLC promoter that, in addition to intragenic sequences, is required for expression in nonvernalized plants.  (+info)