Tetracycline-inducible packaging cell line for production of flavivirus replicon particles. (57/427)

We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 10(10) VLPs per 10(6) transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.  (+info)

Mimicking live flavivirus immunization with a noninfectious RNA vaccine. (58/427)

Flaviviruses are human pathogens of world-wide medical importance. They have recently received much additional attention because of their spread to new regions (such as West Nile virus to North America), highlighting their potential as newly emerging disease agents. Using tick-borne encephalitis virus, we have developed and evaluated in mice a new genetic vaccine based on self-replicating but noninfectious RNA. This RNA contains all of the necessary genetic information for establishing its replication machinery in the host cell, thus mimicking a natural infection. However, genetic modifications in the region encoding the capsid protein simultaneously prevent the assembly of infectious virus particles and promote the secretion of noninfectious subviral particles that elicit neutralizing antibodies. These characteristics demonstrate that a new generation of flavivirus vaccines can be designed that stimulate the same spectrum of innate and specific immune responses as a live vaccine but have the safety features of an inactivated vaccine.  (+info)

Evidence that a mechanism for efficient flavivirus budding upregulates MHC class I. (59/427)

An appealing hypothesis for the biological role of flavivirus-induced, interferon-independent, upregulation of MHC class I on the surface of infected cells is that of viral immune evasion from NK cell recognition. Here we show that a mechanism for efficient flavivirus morphogenesis interferes with the MHC class I pathway, using a flavivirus budding mutant and recombinant expression of wild-type and mutant forms of the flavivirus structural proteins. We propose that the phenomenon of flavivirus-mediated MHC class I upregulation is a by-product of a unique assembly strategy evolved by flaviviruses and therefore did not evolve primarily as an immune escape mechanism for virus growth in the vertebrate host.  (+info)

Sequences of flavivirus-related RNA viruses persist in DNA form integrated in the genome of Aedes spp. mosquitoes. (60/427)

Flavivirus-related sequences have been discovered in the dsDNA genome of Aedes albopictus and Aedes aegypti mosquitoes, demonstrating for the first time an integration into a eukaryotic genome of a multigenic sequence from an RNA virus that replicates without a recognized DNA intermediate. In the Aedes albopictus C6/36 cell line, an open reading frame (ORF) of 1557 aa with protease/helicase and polyprotein processing domains characteristic of flaviviruses was identified. It is closely related to NS1-NS4A genes of the Cell Fusing Agent and Kamiti River virus and the corresponding mRNAs were detected. Integrated sequences homologous to the envelope, NS4B and polymerase genes of flaviviruses were identified. Overall, approximately two-thirds of a flavivirus-like genome were characterized. In the Aedes aegypti A20 cell line, a 492 aa ORF related to the polymerase of the Cell Fusing Agent and Kamiti River virus was identified. These flavivirus-related integrated DNA sequences were detected in laboratory-bred and wild Aedes albopictus and Aedes aegypti mosquitoes, demonstrating that their discovery is not an artefact resulting from the manipulation of mosquito cell lines, since they exist under natural conditions. This finding has major implications regarding evolution, as it represents an entirely different mechanism by which genetic diversity may be generated in eukaryotic cells distinct from accepted processes.  (+info)

Exchanging the yellow fever virus envelope proteins with Modoc virus prM and E proteins results in a chimeric virus that is neuroinvasive in SCID mice. (61/427)

A chimeric flavivirus infectious cDNA was constructed by exchanging the premembrane (prM) and envelope (E) genes of the yellow fever virus vaccine strain 17D (YF17D) with the corresponding genes of Modoc virus (MOD). This latter virus belongs to the cluster of the "not-known vector" flaviviruses and is, unlike YF17D, neuroinvasive in SCID mice. Replication of in vitro-transcribed RNA from this chimeric flavivirus was shown by [(3)H]uridine labeling and RNA analysis. Expression of the MOD prM and E proteins was monitored by radioimmunoprecipitation and revealed that the MOD proteins were correctly and efficiently produced from the chimeric precursor protein. The MOD E protein was shown to be N-linked glycosylated, whereas prM, as predicted from the genome sequence, did not contain N-linked carbohydrates. In Vero cells, the chimeric virus replicated with a similar efficiency as the parental viruses, although it formed smaller plaques than YF17D and MOD. In SCID mice that had been infected intraperitoneally with the chimeric virus, the viral load increased steadily until death. The MOD/YF virus, like MOD from which it had acquired the prM and E structural proteins, but unlike YF, proved neuroinvasive in SCID mice. Animals developed neurological symptoms about 15 days after inoculation and died shortly thereafter. The distribution of MOD/YF RNA in the brain of infected mice was similar to that observed in MOD-infected mice. The observations provide compelling evidence that the determinants of neuroinvasiveness of flaviviruses are entirely located in the envelope proteins prM and E.  (+info)

Use of recombinant E protein domain III-based enzyme-linked immunosorbent assays for differentiation of tick-borne encephalitis serocomplex flaviviruses from mosquito-borne flaviviruses. (62/427)

The serological diagnosis of infection by flaviviruses is complicated by the presence of flavivirus cross-reactive antibodies that produce false-positive results for flavivirus infections, especially in regions where more than one virus is endemic. Current diagnostic reagents for tick-borne flavivirus infection have been found to cross-react with yellow fever- or dengue virus-positive sera. This study utilized recombinant flavivirus E protein domain 3 (rE-D3) as a diagnostic reagent to differentiate between infection by mosquito- and tick-borne flaviviruses. This study found that the use of rE-D3 in an enzyme-linked immunosorbent assay (ELISA)-based format allowed the differentiation between serum specific for either mosquito- or tick-borne flaviviruses, but not among the members of the tick-borne encephalitis (TBE) serocomplex of flaviviruses. Sera derived against several TBE serocomplex rE-D3 were found to cross-react with heterologous rE-D3 within the TBE serocomplex, but not with those from mosquito-borne flaviviruses, in both Western blots and ELISAs. Mouse hyperimmune sera generated against TBE serocomplex viruses were also found to react specifically with TBE serocomplex rE-D3, but not with rE-D3 from mosquito-borne viruses and vice versa. When a similar test using virus-derived antigen was performed, a loss of both specificity and sensitivity was observed. These results indicate that flavivirus rE-D3 would be a useful reagent for the detection of infection by TBE serocomplex flaviviruses, several of which are potential biothreat agents, but would not provide the ability to differentiate among infections by separate members of the serocomplex.  (+info)

Complete genome analysis and molecular characterization of Usutu virus that emerged in Austria in 2001: comparison with the South African strain SAAR-1776 and other flaviviruses. (63/427)

Here we describe the complete genome sequences of two strains of Usutu virus (USUV), a mosquito-borne member of the genus Flavivirus in the Japanese encephalitis virus (JEV) serogroup. USUV was detected in Austria in 2001 causing a high mortality rate in blackbirds; the reference strain (SAAR-1776) was isolated in 1958 from mosquitoes in South Africa and has never been associated with avian mortality. The Austrian and South African isolates exhibited 97% nucleotide and 99% amino acid identity. Phylogenetic trees were constructed displaying the genetic relationships of USUV with other members of the genus Flavivirus. When comparing USUV with other JEV serogroup viruses, the closest lineage was Murray Valley encephalitis virus (nt: 73%, aa: 82%) followed by JEV (nt: 71%, aa: 81%) and West Nile virus (nt: 68%, aa: 75%). Comparison of the genomes showed that the conserved structural elements and putative enzyme motifs were homologous in the two USUV strains and the JEV serogroup. The factors that determine the severe clinical symptoms caused by the Austrian USUV strain in Eurasian blackbirds are discussed. We also offer a possible explanation for the origins and dispersal of USUV, JEV, and MVEV out of Africa.  (+info)

Performance of immunoglobulin G (IgG) and IgM enzyme-linked immunosorbent assays using a West Nile virus recombinant antigen (preM/E) for detection of West Nile virus- and other flavivirus-specific antibodies. (64/427)

Focus Technologies developed an indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a mu-capture IgM ELISA for the detection of West Nile virus (WNV)-specific antibodies based on a WNV preM/E protein recombinant antigen. Normal and disease state serum panels were used to assess the performance characteristics of the two WNV ELISA kits. Totals of 807 and 1,423 sera were used to assess the IgG ELISA and IgM ELISA kits, respectively. The Focus Technologies IgG ELISA had a sensitivity of 97.6% and a specificity of 92.1% (excluding non-WNV flavivirus sera). The comparative method for WNV IgG may lack sensitivity in detecting IgG in early WNV infection, so the specificity of the Focus IgG ELISA may be higher than 92.1%. When sera from patients either infected with or vaccinated against other flaviviruses were tested on the WNV IgG assay, 35% of the sera reacted as positive for WNV IgG. Yellow fever and Japanese encephalitis vaccinees were less reactive in the IgG ELISA than St. Louis and dengue fever patients. The Focus Technologies IgM ELISA had a sensitivity and a specificity of 99.3% (excluding the non-WNV flavivirus sera). The overall cross-reactivity for the IgM ELISA to flavivirus sera was 12%, with 31% of St. Louis encephalitis patients found to be WNV IgM positive and no yellow fever vaccinees found to be WNV IgM positive. In a selected population of 706 sera, 15 false-positive WNV IgM sera were identified. The use of a background subtraction method for the IgM ELISA eliminated all 15 false-positive results, giving a specificity of 100% for the Focus IgM ELISA.  (+info)