Phylogenetic relationships of flaviviruses correlate with their epidemiology, disease association and biogeography. (9/158)

Phylogenetic analysis of the Flavivirus genus, using either partial sequences of the non-structural 5 gene or the structural envelope gene, revealed an extensive series of clades defined by their epidemiology and disease associations. These phylogenies identified mosquito-borne, tick-borne and no-known-vector (NKV) virus clades, which could be further subdivided into clades defined by their principal vertebrate host. The mosquito-borne flaviviruses revealed two distinct epidemiological groups: (i) the neurotropic viruses, often associated with encephalitic disease in humans or livestock, correlated with the Culex species vector and bird reservoirs and (ii) the non-neurotropic viruses, associated with haemorrhagic disease in humans, correlated with the Aedes species vector and primate hosts. Thus, the tree topology describing the virus-host association may reflect differences in the feeding behaviour between Aedes and Culex mosquitoes. The tick-borne viruses also formed two distinct groups: one group associated with seabirds and the other, the tick-borne encephalitis complex viruses, associated primarily with rodents. The NKV flaviviruses formed three distinct groups: one group, which was closely related to the mosquito-borne viruses, associated with bats; a second group, which was more genetically distant, also associated with bats; and a third group associated with rodents. Each epidemiological group within the phylogenies revealed distinct geographical clusters in either the Old World or the New World, which for mosquito-borne viruses may reflect an Old World origin. The correlation between epidemiology, disease correlation and biogeography begins to define the complex evolutionary relationships between the virus, vector, vertebrate host and ecological niche.  (+info)

A novel mechanism to explain protein abnormalities in schizophrenia based on the flavivirus resistance gene. (10/158)

The geographical distribution of schizophrenia was previously shown to correlate with the global distribution of tick-borne flaviviruses. The correlation suggests a natural resistance gene to flaviviruses could be involved in schizophrenia. The flavivirus resistance gene, Flv, a gene found in wild mice and certain in-bred strains, confers resistance to flaviviruses through the interaction of cellular proteins with the flaviviral 3' untranslated regions (UTRs). Although the sequence and product of Flv are unknown, translation elongation factor alpha-1 (EF-1) is a protein known to interact with the 3' UTR flavivirus RNA, forming some complexes with long half-lives that inhibit RNA growth. A study was performed to assess the homology between flaviviral UTRs, subunits of EF-1, and selected proteins reported as abnormal in schizophrenia. The UTRs of four flaviviruses with wide geographical and phylogenic distribution were manually translated. Using the National Biomedical Research Foundation protein databank, the amino acid sequences were correlated with the amino acid sequences of selected proteins. The amino acid sequences of the EF-1 subunits were then correlated with the same proteins. Similar amino acid correlations between the proteins, EF-1 subunits and viral UTRs suggest that translational pathophysiology resulting from the product of Flv can be postulated as the cause of protein abnormalities observed in schizophrenia.  (+info)

Assessment of the factors associated with flavivirus seroprevalence in a population in Southern Vietnam. (11/158)

Dengue and Japanese encephalitis flaviviruses cause severe disease and are hyperendemic in southern Vietnam. This study assesses associations between sociodemographic factors and flavivirus seroprevalence in this region. Sera were collected from 308 community and hospital-based subjects between April 1996 and August 1997 and tested with an indirect ELISA. The factors associated with seroprevalence were assessed using multivariate logistic regression. In this first report of adjusted prevalence odds ratios (POR) for flavivirus infection in Vietnam, seropositivity was associated with increasing age in children (multiple regression coefficients for a child compared to an adult = -4.975 and for age in children = 0.354) and residence in the city compared to surrounding rural districts. The association with age indicates that subjects were most likely to have acquired infection in early childhood. This is key to the design of Vietnamese health education and immunization programmes.  (+info)

Antibodies against prM protein distinguish between previous infection with dengue and Japanese encephalitis viruses. (12/158)

BACKGROUND: In Southeast Asia, dengue viruses often co-circulate with other flaviviruses such as Japanese encephalitis virus, and due to the presence of shared antigenic epitopes it is often difficult to use serological methods to distinguish between previous infections by these flaviviruses. RESULTS: Convalescent sera from 69 individuals who were known to have had dengue or Japanese encephalitis virus infection were tested by western blotting against dengue, Japanese encephalitis and West Nile virus antigens. We determined that individuals who had been infected with dengue viruses had IgG responses against the premembrane protein of dengue viruses but not Japanese encephalitis, whereas individuals who had been infected with Japanese encephalitis had IgG specific for the premembrane protein of Japanese encephalitis virus but not the dengue viruses. None reacted with the premembrane protein of West Nile virus. Using the Pearson Chi Square test, it was determined that the difference between the two groups was highly significant with a p value of <0.001. CONCLUSION: The use of flavivirus premembrane protein in seroepidemiological studies will be useful in determining what flaviviruses have circulated in a community.  (+info)

Positional cloning of the murine flavivirus resistance gene. (13/158)

Inbred mouse strains exhibit significant differences in their susceptibility to viruses in the genus Flavivirus, which includes human pathogens such as yellow fever, Dengue, and West Nile virus. A single gene, designated Flv, confers this differential susceptibility and was mapped previously to a region of mouse chromosome 5. A positional cloning strategy was used to identify 22 genes from the Flv gene interval including 10 members of the 2'-5'-oligoadenylate synthetase gene family. One 2'-5'-oligoadenylate synthetase gene, Oas1b, was identified as Flv by correlation between genotype and phenotype in nine mouse strains. Susceptible mouse strains produce a protein lacking 30% of the C-terminal sequence as compared with the resistant counterpart because of the presence of a premature stop codon. The Oas1b gene differs from all the other murine Oas genes by a unique four-amino acid deletion in the P-loop located within the conserved RNA binding domain. Expression of the resistant allele of Oas1b in susceptible embryo fibroblasts resulted in partial inhibition of the replication of a flavivirus but not of an alpha togavirus.  (+info)

Infection of SCID mice with Montana Myotis leukoencephalitis virus as a model for flavivirus encephalitis. (14/158)

We have established a convenient animal model for flavivirus encephalitis using Montana Myotis leukoencephalitis virus (MMLV), a bat flavivirus. This virus has the same genomic organization, and contains the same conserved motifs in genes that encode potential antiviral targets, as flaviviruses that cause disease in man (N. Charlier et al., accompanying paper), and has a similar particle size (approximately 40 nm). MMLV replicates well in Vero cells and appears to be equally as sensitive as yellow fever virus and dengue fever virus to a selection of experimental antiviral agents. Cells infected with MMLV show dilation of the endoplasmic reticulum, a characteristic of flavivirus infection. Intraperitoneal, intranasal or direct intracerebral inoculation of SCID mice with MMLV resulted in encephalitis ultimately leading to death, whereas immunocompetent mice were refractory to either intranasal or intraperitoneal infection with MMLV. Viral RNA and/or antigens were detected in the brain and serum of MMLV-infected SCID mice, but not in any other organ examined: MMLV was detected in the olfactory lobes, the cerebral cortex, the limbic structures, the midbrain, cerebellum and medulla oblongata. Infection was confined to neurons. Treatment with the interferon-alpha/beta inducer poly(I).poly(C) protected SCID mice against MMLV-induced morbidity and mortality, and this protection correlated with a reduction in infectious virus titre and viral RNA load. This validates the MMLV model for use in antiviral drug studies. The MMLV SCID model may, therefore, be attractive for the study of chemoprophylactic or chemotherapeutic strategies against flavivirus infections causing encephalitis.  (+info)

Interferons, interferon inducers, and interferon-ribavirin in treatment of flavivirus-induced encephalitis in mice. (15/158)

We evaluated the prophylactic and therapeutic efficacy of interferon alpha-2b, pegylated interferon alpha-2b, poly(I. C), and Ampligen against Modoc virus encephalitis in an animal model for flavivirus infections. All compounds significantly delayed virus-induced morbidity (paralysis) and mortality (due to progressive encephalitis). Viral load (as measured on day 7 postinfection) was significantly reduced by 80 to 100% in the serum, brain, and spleen in mice that had been treated with either interferon alpha-2b, pegylated interferon alpha-2b, poly(I. C), or Ampligen. We also studied whether a combination of interferon alpha-2b and ribavirin (presently the standard therapy for the treatment of infections with hepatitis C virus) would be more effective than treatment with interferon alone. However, ribavirin did not enhance the inhibitory effect of interferon therapy in this animal model for flavivirus infections.  (+info)

Epitope-blocking enzyme-linked immunosorbent assays for the detection of serum antibodies to west nile virus in multiple avian species. (16/158)

We report the development of epitope-blocking enzyme-linked immunosorbent assays (ELISAs) for the rapid detection of serum antibodies to West Nile virus (WNV) in taxonomically diverse North American avian species. A panel of flavivirus-specific monoclonal antibodies (MAbs) was tested in blocking assays with serum samples from WNV-infected chickens and crows. Selected MAbs were further tested against serum samples from birds that represented 16 species and 10 families. Serum samples were collected from birds infected with WNV or Saint Louis encephalitis virus (SLEV) and from noninfected control birds. Serum samples from SLEV-infected birds were included in these experiments because WNV and SLEV are closely related antigenically, are maintained in similar transmission cycles, and have overlapping geographic distributions. The ELISA that utilized MAb 3.1112G potentially discriminated between WNV and SLEV infections, as all serum samples from WNV-infected birds and none from SLEV-infected birds were positive in this assay. Assays with MAbs 2B2 and 6B6C-1 readily detected serum antibodies in all birds infected with WNV and SLEV, respectively, and in most birds infected with the other virus. Two other MAbs partially discriminated between infections with these two viruses. Serum samples from most WNV-infected birds but no SLEV-infected birds were positive with MAb 3.67G, while almost all serum samples from SLEV-infected birds but few from WNV-infected birds were positive with MAb 6B5A-5. The blocking assays reported here provide a rapid, reliable, and inexpensive diagnostic and surveillance technique to monitor WNV activity in multiple avian species.  (+info)