Crystal structure of the FMN-binding domain of human cytochrome P450 reductase at 1.93 A resolution. (1/667)

The crystal structure of the FMN-binding domain of human NADPH-cytochrome P450 reductase (P450R-FMN), a key component in the cytochrome P450 monooxygenase system, has been determined to 1.93 A resolution and shown to be very similar both to the global fold in solution (Barsukov I et al., 1997, J Biomol NMR 10:63-75) and to the corresponding domain in the 2.6 A crystal structure of intact rat P450R (Wang M et al., 1997, Proc Nat Acad Sci USA 94:8411-8416). The crystal structure of P450R-FMN reported here confirms the overall similarity of its alpha-beta-alpha architecture to that of the bacterial flavodoxins, but reveals differences in the position, number, and length of the helices relative to the central beta-sheet. The marked similarity between P450R-FMN and flavodoxins in the interactions between the FMN and the protein, indicate a striking evolutionary conservation of the FMN binding site. The P450R-FMN molecule has an unusual surface charge distribution, leading to a very strong dipole, which may be involved in docking cytochrome P450 into place for electron transfer near the FMN. Several acidic residues near the FMN are identified by mutagenesis experiments to be important for electron transfer to P4502D6 and to cytochrome c, a clear indication of the part of the molecular surface that is likely to be involved in substrate binding. Somewhat different parts are found to be involved in binding cytochrome P450 and cytochrome c.  (+info)

A novel reduced flavin mononucleotide-dependent methanesulfonate sulfonatase encoded by the sulfur-regulated msu operon of Pseudomonas aeruginosa. (2/667)

When Pseudomonas aeruginosa is grown with organosulfur compounds as sulfur sources, it synthesizes a set of proteins whose synthesis is repressed in the presence of sulfate, cysteine, or thiocyanate (so-called sulfate starvation-induced proteins). The gene encoding one of these proteins, PA13, was isolated from a cosmid library of P. aeruginosa PAO1 and sequenced. It encoded a 381-amino-acid protein that was related to several reduced flavin mononucleotide (FMNH2)-dependent monooxygenases, and it was the second in an operon of three genes, which we have named msuEDC. The MsuD protein catalyzed the desulfonation of alkanesulfonates, requiring oxygen and FMNH2 for the reaction, and showed highest activity with methanesulfonate. MsuE was an NADH-dependent flavin mononucleotide (FMN) reductase, which provided reduced FMN for the MsuD enzyme. Expression of the msu operon was analyzed with a transcriptional msuD::xylE fusion and was found to be repressed in the presence of sulfate, sulfite, sulfide, or cysteine and derepressed during growth with methionine or alkanesulfonates. Growth with methanesulfonate required an intact cysB gene, and the msu operon is therefore part of the cys regulon, since sulfite utilization was found to be CysB independent in this species. Measurements of msuD::xylE expression in cysN and cysI genetic backgrounds showed that sulfate, sulfite, and sulfide or cysteine play independent roles in negatively regulating msu expression, and sulfonate utilization therefore appears to be tightly regulated.  (+info)

Structure of a cytochrome P450-redox partner electron-transfer complex. (3/667)

The crystal structure of the complex between the heme- and FMN-binding domains of bacterial cytochrome P450BM-3, a prototype for the complex between eukaryotic microsomal P450s and P450 reductase, has been determined at 2.03 A resolution. The flavodoxin-like flavin domain is positioned at the proximal face of the heme domain with the FMN 4.0 and 18.4 A from the peptide that precedes the heme-binding loop and the heme iron, respectively. The heme-binding peptide represents the most efficient and coupled through-bond electron pathway to the heme iron. Substantial differences between the FMN-binding domains of P450BM-3 and microsomal P450 reductase, observed around the flavin-binding sites, are responsible for different redox properties of the FMN, which, in turn, control electron flow to the P450.  (+info)

The flavin environment in old yellow enzyme. An evaluation of insights from spectroscopic and artificial flavin studies. (4/667)

Spectroscopic and chemical modification studies of modified flavins bound to old yellow enzyme have led to predictions about the flavin environment of this enzyme. These studies analyzed solvent accessibility and hydrogen bonding patterns of particular flavin atoms, in addition to suggesting amino acid residues that are in close proximity to those atoms. Here, these studies are evaluated in the light of the crystal structure of old yellow enzyme to reveal that the spectroscopic and modified flavin results are generally consistent with the crystal structure. This highlights the fact that these are useful methods for studying flavin binding site structure. Although several of the inferred properties of the flavin environment are not consistent with the crystal structure, these discrepancies occurred in cases where an incorrect choice was made from among multiple plausible explanations for an experimental result. We conclude that modified flavin studies are powerful probes of flavin environment; however, it is risky to specify details of interactions, especially because of uncertainties due to induced charge delocalization in the flavin.  (+info)

The role of threonine 37 in flavin reactivity of the old yellow enzyme. (5/667)

Threonine 37 is conserved among all the members of the old yellow enzyme (OYE) family. The hydroxyl group of this residue forms a hydrogen bond with the C-4 oxygen atom of the FMN reaction center of the enzyme [Fox, K. M. & Karplus, P. A. (1994) Structure 2, 1089-1105]. The position of Thr-37 and its interaction with flavin allow for speculations about its role in enzyme activity. This residue was mutated to alanine and the mutant enzyme was studied and compared with the wild-type OYE1 to evaluate its mechanistic function. The mutation has different effects on the two separate half-reactions of the enzyme. The mutant enzyme has enhanced activity in the oxidative half-reaction but the reductive half-reaction is slowed down by more than one order of magnitude. The peaks of the absorption spectra for enzyme bound with phenolic compounds are shifted toward shorter wavelengths than those of wild-type OYE1, consistent with its lower redox potential. It is suggested that Thr-37 in the wild-type OYE1 increases the redox potential of the enzyme by stabilizing the negative charge of the reduced flavin through hydrogen bonding with it.  (+info)

Engineering precision RNA molecular switches. (6/667)

Ligand-specific molecular switches composed of RNA were created by coupling preexisting catalytic and receptor domains via structural bridges. Binding of ligand to the receptor triggers a conformational change within the bridge, and this structural reorganization dictates the activity of the adjoining ribozyme. The modular nature of these tripartite constructs makes possible the rapid construction of precision RNA molecular switches that trigger only in the presence of their corresponding ligand. By using similar enzyme engineering strategies, new RNA switches can be made to operate as designer molecular sensors or as a new class of genetic control elements.  (+info)

Flavodoxin: an allosteric inhibitor of AMP nucleosidase from Azotobacter vinelandii. (7/667)

Flavodoxin, which participates in nitrogen fixation, was found to be a potent allosteric inhibitor of AMP nucleosidase [EC 3.2.2.4] from Azotobacter vinelandii. It inhibited the enzyme by decreasing its affinity for ATP without affecting the maximum velocity. The inhibition constant for flavodoxin was estimated to be 10 muM, which is within the range of physiological concentration in the cells. The concentration of flavodoxin able to alter the activity in vitro suggests that this phenomenon could be of significance in the regulation of flavin biosynthesis in vivo. Flavin mononucleotide (FMN), a prosthetic group of flavodoxin, was also found to act as an allosteric inhibitor. Since no inhibitory action of apo-flavodoxin was observed, it was concluded that the FMN chromophore of the flavodoxin is responsible for the inhibition of the enzyme by this protein.  (+info)

The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. (8/667)

A 3.5 kb EcoRI-BamHI fragment of Bacillus subtilis chromosomal DNA carrying the ribR gene, involved in regulation of the B. subtilis riboflavin operon, was cloned in the B. subtilis-Escherichia coli shuttle vector pCB20. DNA sequence analysis of this fragment revealed several ORFs, one of which encodes a polypeptide of 230 amino acids with up to 45% sequence identity with FAD synthetases from a number of micro-organisms, such as Corynebacterium ammoniagenes, E. coli and Pseudomonas fluorescens, and also to the ribC gene product of B. subtilis. The ribR gene was amplified by PCR, cloned and expressed in E. coli. Measurement of flavokinase activity in cell extracts demonstrated that ribR encodes a monofunctional flavokinase which converts riboflavin into FMN but not to FAD, and is specific for the reduced form of riboflavin.  (+info)