Rotational symmetry of the C ring and a mechanism for the flagellar rotary motor. (41/3084)

FliG, FliM, and FliN, key proteins for torque generation, are located in two rings. The first protein is in the M ring and the last two are in the C ring. The rotational symmetries of the C and M rings have been determined to be about 34 (this paper) and 26 (previous work), respectively. The mechanism proposed here depends on the symmetry mismatch between the rings: the C ring extends 34 levers, of which 26 can bind to the 26 equivalent sites on the M ring. The remaining 8 levers bind to proton-pore complexes (studs) to form 8 torque generators. Movement results from the swapping of stud-bound levers with M ring-bound levers. The model predicts that both the M and C rings rotate in the same direction but at different speeds.  (+info)

Measurements of Euglena motion parameters by laser light scattering. (42/3084)

Measurements of Euglena gracilis motion parameters have been performed by the spectral analysis of the scattered laser light. Samples were oriented by a radiofrequency field to obtain easily interpretable spectra. Cell rotation frequency and flagellar beating frequency distributions were obtained from the homodyne spectra, whereas the Doppler lines obtained at small observation angles by heterodyne detection yielded the swimming speed distributions. We discuss the broadening of the heterodyne spectra at large angles of observation. An application of this method to the study of the photo-kinetic effect is also described.  (+info)

Substrate specificity switching of the flagellum-specific export apparatus during flagellar morphogenesis in Salmonella typhimurium. (43/3084)

During flagellar morphogenesis in Salmonella typhimurium, the flagellum-specific anti-sigma factor FlgM is exported out of the cells only after completion of hook assembly. In this study, we examined the export of the flagellar proteins, FlgD (hook capping protein), FlgE (hook protein), FlgK and FlgL (hook-filament junction proteins), FliD (filament capping protein), and FliC (flagellin), before and after completion of hook assembly. Like the FlgM protein, the FlgK, FlgL, FliD, and FliC proteins are exported efficiently only after completion of hook assembly. On the other hand, the FlgD and FlgE proteins are exported efficiently before, but poorly after, hook completion. These results indicate that the export properties are different between these two groups and that their export order exactly parallels the assembly order of the hook-filament structure. We propose that the substrate specificity switching occurs in the flagellum-specific export apparatus upon completion of hook assembly.  (+info)

Effect of hook subunit concentration on assembly and control of length of the flagellar hook of Salmonella. (44/3084)

The flagellar hook of Salmonella is a filamentous polymer made up of subunits of the protein FlgE. Hook assembly is terminated when the length reaches about 55 nm. After our recent study of the effect of cellular levels of the hook length control protein FliK, we have now analyzed the effect of cellular levels of FlgE itself. When FlgE was overproduced in a wild-type strain, a fliC (flagellin) mutant, or a fliD (hook-associated protein 2 [HAP2], filament capping protein) mutant, the hooks remained at the wild-type length. In a fliK (hook length control protein) mutant, which produces long hooks (polyhooks), the overproduction of FlgE resulted in extraordinarily long hooks (superpolyhooks). In a flgK (HAP1, first hook-filament junction protein) mutant or a flgL (HAP3, second hook-filament junction protein) mutant, the overproduction of FlgE also resulted in longer than normal hooks. Thus, at elevated hook protein levels not only FliK but also FlgK and FlgL are necessary for the proper termination of hook elongation. When FlgE was severely underproduced, basal bodies without hooks were often observed. However, those hooks that were seen were of wild-type length, demonstrating that FlgE underproduction decreases the probability of the initiation of hook assembly but not the extent of hook elongation.  (+info)

Induction of cytokine synthesis by flagella from gram-negative bacteria may be dependent on the activation or differentiation state of human monocytes. (45/3084)

We have previously demonstrated that salmonellae, but not Escherichia coli or Yersinia enterocolitica, stimulates tumor necrosis factor alpha (TNFalpha) production in the human promonocytic cell line U38. Subsequent analysis revealed that the TNFalpha-inducing activity of salmonellae was associated with flagellin, a major component of flagella from gram-negative bacteria. In the present study, we have explored the basis for the apparent specificity of action of Salmonella flagella on TNFalpha expression in U38 cells and have extended this analysis to normal human peripheral blood mononuclear cells (PBMC). Flagella from the enteropathogenic E. coli strain E2348/69, Y. enterocolitica JB580, and Pseudomonas aeruginosa PAO1, which did not induce significant levels of TNFalpha production in U38 cells, were as potent as Salmonella flagella in terms of TNFalpha and interleukin 1beta activation in PBMC. However, TNFalpha production in U38 cells was greatly enhanced when these cells were stimulated with flagella from E. coli, Y. enterocolitica, and P. aeruginosa in the presence of a costimulant, phorbol 13-myristate acetate. These findings are consistent with the hypothesis that the activation or differentiation state of a monocyte may have a substantial effect on the cell's responsiveness to flagellum stimulation of cytokine synthesis. Furthermore, these results indicate that cytokine induction in monocytes may be a general property of flagella from gram-negative bacteria.  (+info)

FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. (46/3084)

The biogenesis of the polar flagellum of Caulobacter crescentus is regulated by the cell cycle as well as by a trans-acting regulatory hierarchy that functions to couple flagellum assembly to gene expression. The assembly of early flagellar structures (MS ring, switch, and flagellum-specific secretory system) is required for the transcription of class III genes, which encode the remainder of the basal body and the external hook structure. Similarly, the assembly of class III gene-encoded structures is required for the expression of the class IV flagellins, which are incorporated into the flagellar filament. Here, we demonstrate that mutations in flbT, a flagellar gene of unknown function, can restore flagellin protein synthesis and the expression of fljK::lacZ (25-kDa flagellin) protein fusions in class III flagellar mutants. These results suggest that FlbT functions to negatively regulate flagellin expression in the absence of flagellum assembly. Deletion analysis shows that sequences within the 5' untranslated region of the fljK transcript are sufficient for FlbT regulation. To determine the mechanism of FlbT-mediated regulation, we assayed the stability of fljK mRNA. The half-life (t(1/2)) of fljK mRNA in wild-type cells was approximately 11 min and was reduced to less than 1.5 min in a flgE (hook) mutant. A flgE flbT double mutant exhibited an mRNA t(1/2) of greater than 30 min. This suggests that the primary effect of FlbT regulation is an increased turnover of flagellin mRNA. The increased t(1/2) of fljK mRNA in a flbT mutant has consequences for the temporal expression of fljK. In contrast to the case for wild-type cells, fljK::lacZ protein fusions in the mutant are expressed almost continuously throughout the C. crescentus cell cycle, suggesting that coupling of flagellin gene expression to assembly has a critical influence on regulating cell cycle expression.  (+info)

Mosquito hearing: sound-induced antennal vibrations in male and female Aedes aegypti. (47/3084)

Male mosquitoes are attracted by the flight sounds of conspecific females. In males only, the antennal flagellum bears a large number of long hairs and is therefore said to be plumose. As early as 1855, it was proposed that this remarkable antennal anatomy served as a sound-receiving structure. In the present study, the sound-induced vibrations of the antennal flagellum in male and female Aedes aegypti were compared, and the functional significance of the flagellar hairs for audition was examined. In both males and females, the antennae are resonantly tuned mechanical systems that move as simple forced damped harmonic oscillators when acoustically stimulated. The best frequency of the female antenna is around 230 Hz; that of the male is around 380 Hz, which corresponds approximately to the fundamental frequency of female flight sounds. The antennal hairs of males are resonantly tuned to frequencies between approximately 2600 and 3100 Hz and are therefore stiffly coupled to, and move together with, the flagellar shaft when stimulated at biologically relevant frequencies around 380 Hz. Because of this stiff coupling, forces acting on the hairs can be transmitted to the shaft and thus to the auditory sensory organ at the base of the flagellum, a process that is proposed to improve acoustic sensitivity. Indeed, the mechanical sensitivity of the male antenna not only exceeds the sensitivity of the female antenna but also those of all other arthropod movement receivers studied so far.  (+info)

Characterization of a targeting motif for a flagellar membrane protein in Leishmania enriettii. (48/3084)

The surface membranes of eukaryotic flagella and cilia are contiguous with the plasma membrane. Despite the absence of obvious physical structures that could form a barrier between the two membrane domains, the lipid and protein compositions of flagella and cilia are distinct from the rest of the cell surface membrane. We have exploited a flagellar glucose transporter from the parasitic protozoan Leishmania enriettii as a model system to characterize the first targeting motif for a flagellar membrane protein in any eukaryotic organism. In this study, we demonstrate that the flagellar membrane-targeting motif is recognized by several species of Leishmania. Previously, we demonstrated that the 130 amino acid NH(2)-terminal cytoplasmic domain of isoform 1 glucose transporter was sufficient to target a nonflagellar integral membrane protein into the flagellar membrane. We have now determined that an essential flagellar targeting signal is located between amino acids 20 and 35 of the NH(2)-terminal domain. We have further analyzed the role of specific amino acids in this region by alanine replacement mutagenesis and determined that single amino acid substitutions did not abrogate targeting to the flagellar membrane. However, individual mutations located within a cluster of five contiguous amino acids, RTGTT, conferred differences in the degree of targeting to the flagellar membrane and the flagellar pocket, implying a role for these residues in the mechanism of flagellar trafficking.  (+info)