Repair of mitomycin C cross-linked DNA in mammalian cells measured by a host cell reactivation assay. (1/66)

DNA repair capacity in a cell could be detected by a host-cell reactivation assay (HCR). Since relation between DNA repair and genetic susceptibility to cancer remains unclear, it is necessary to identify DNA repair defects in human cancer cells. To assess DNA repair for breast cancer susceptibility, we developed a modified HCR assay using a plasmid containing a firefly luciferase gene damaged by mitomycin C (MMC), which forms interstrand cross-link (ICL) adducts. In particular, interstrand cross-link is thought to induce strand breaks being repaired by homologous recombination. The MMC-ICLs were verified by electrophoresis. Damaged plasmids were transfected into apparently normal human lymphocytes and NER-deficient XP cell lines and the DNA repair capacity of the cells were measured by quantifying the activity of the firefly luciferase. MMC lesion was repaired as much as UV adducts in normal lymphocytes and the XPC cells. However, the XPA cells have a lower repair capacity for MMC lesion than the XPC cell, indicating that the XPA protein may be involved in initial damage recognition of MMC-ICL adducts. Since several repair pathways including NER and recombination participate in MMC-ICL removal, this host cell reactivation assay using MMC-ICLs can be used in exploring DNA repair defects in human cancer cells.  (+info)

Chemical analysis of surface hydrocarbons in fireflies by direct contact extraction and gas chromatography-mass spectrometry. (2/66)

We characterized three Japanese firefly species (Luciola lateralis, Luciola cruciata, and Lucidina biplagiata) and three North American firefly species (Lucidota atra, Photuris lucicrescens, and Photuris cinctipennis) based on their surface hydrocarbons. The analysis of firefly extracts by gas chromatography-mass spectrometry (GC-MS) revealed clear differences in the chromatographic profiles and mass spectra. Each firefly could be distinguished by its GC-MS profile. A major difference was observed between Japanese fireflies and North American fireflies. Among the North American fireflies, non-luminous fireflies, Lucidota atra, showed much more complicated GC-MS profile than those of luminous fireflies, Photuris lucicrescens and Photuris cinctipennis.  (+info)

Light-dependent development of circadian gene expression in transgenic zebrafish. (3/66)

The roles of environmental stimuli in initiation and synchronization of circadian oscillation during development appear to vary among different rhythmic processes. In zebrafish, a variety of rhythms emerge in larvae only after exposure to light-dark (LD) cycles, whereas zebrafish period3 (per3) mRNA has been reported to be rhythmic from day 1 of development in constant conditions. We generated transgenic zebrafish in which expression of the firefly luciferase (luc) gene is driven by the zebrafish per3 promoter. Live larvae from these lines are rhythmically bioluminescent, providing the first vertebrate system for high-throughput measurement of circadian gene expression in vivo. Circadian rhythmicity in constant conditions was observed only after 5-6 d of development, and only if the fish were exposed to LD signals after day 4. Regardless of light exposure, a novel developmental profile was observed, with low expression during the first few days and a rapid increase when active swimming begins. Ambient temperature affected the developmental profile and overall levels of per3 and luc mRNA, as well as the critical days in which LD cycles were needed for robust bioluminescence rhythms. In summary, per3-luc zebrafish has revealed complex interactions among developmental events, light, and temperature in the expression of a clock gene.  (+info)

RNA interference induced by siRNAs modified with 4'-thioribonucleosides in cultured mammalian cells. (4/66)

Short interfering RNAs (siRNAs) variously modified with 4'-thioribonucleosides against the Photinus luciferase gene were tested for their induction of the RNA interference (RNAi) activity in cultured NIH/3T3 cells. Results indicated that modifications at the sense-strand were well tolerated for RNAi activity except for full modification with 4'-thioribonucleosides. However, the activity of siRNAs modified at the antisense-strand was dependent on the position and the number of modifications with 4'-thioribonucleosides. Since modifications of siRNAs with 4'-thioribonucleosides were well tolerated in RNAi activity compared with that of 2'-O-methyl nucleosides, 4'-thioribonucleosides might be potentially useful in the development of novel and effective chemically modified siRNAs.  (+info)

The role of firefly luciferase C-terminal domain in efficient coupling of adenylation and oxidative steps. (5/66)

The N-terminal domain (N-domain) of the firefly luciferase from Photinus pyraris has weak luminescence activity, and shows a unique light emitting profile with very long rise time of more than several minutes. Through a sensitive assay of the reaction intermediate luciferyl-adenylate (LH2-AMP), we found that the slow increase in the N-domain luminescence faithfully reflected the concentration of dissociated LH2-AMP. No such correlation was observed for wild-type or mutant enzymes with short rise time, except one with longer rise time. The results suggest that the C-terminal domain plays an indispensable role in efficiently coupling adenylation and oxidative steps.  (+info)

Dual luciferase assay system for rapid assessment of gene expression in Saccharomyces cerevisiae. (6/66)

A new reporter system has been developed for quantifying gene expression in the yeast Saccharomyces cerevisiae. The system relies on two different reporter genes, Renilla and firefly luciferase, to evaluate regulated gene expression. The gene encoding Renilla luciferase is fused to a constitutive promoter (PGK1 or SPT15) and integrated into the yeast genome at the CAN1 locus as a control for normalizing the assay. The firefly luciferase gene is fused to the test promoter and integrated into the yeast genome at the ura3 or leu2 locus. The dual luciferase assay is performed by sequentially measuring the firefly and Renilla luciferase activities of the same sample, with the results expressed as the ratio of firefly to Renilla luciferase activity (Fluc/Rluc). The yeast dual luciferase reporter (DLR) was characterized and shown to be very efficient, requiring approximately 1 minute to complete each assay, and has proven to yield data that accurately and reproducibly reflect promoter activity. A series of integrating plasmids were generated that contain either the firefly or Renilla luciferase gene preceded by a multi-cloning region in two different orientations and the three reading frames to make possible the generation of translational fusions. Additionally, each set of plasmids contains either the URA3 or LEU2 marker for genetic selection in yeast. A series of S288C-based yeast strains, including a two-hybrid strain, were developed to facilitate the use of the yeast DLR assay. This assay can be readily adapted to a high-throughput platform for studies requiring numerous measurements.  (+info)

The flatworm spliced leader 3'-terminal AUG as a translation initiator methionine. (7/66)

Spliced leader (SL) RNA trans-splicing contributes the 5' termini to mRNAs in a variety of eukaryotes. In contrast with some transsplicing metazoan groups (e.g. nematodes), flatworm spliced leaders are variable in both sequence and length in different flatworm taxa. However, an absolutely conserved and unique feature of all flatworm spliced leaders is the presence of a 3'-terminal AUG. We previously suggested that the Schistosoma mansoni spliced leader AUG might contribute a required translation initiator methionine to recipient mRNAs. Here we identified and examined trans-spliced cDNAs from a large set of newly available schistosome cDNAs. 28% of the trans-spliced cDNAs have the SL AUG in-frame with the major open reading frame of the mRNA. We identified over 40 cDNAs (40% of the SL AUG in-frame clones) that require the SL AUG as an initiator methionine to synthesize phylogenetically conserved N-terminal residues characteristic of orthologous proteins. RNA transfection experiments using several schistosome stages demonstrated that the flatworm SL AUG can serve as a translation initiator methionine in vivo. We also present in vivo translation studies of the schistosome initiator methionine context and the effect of the spliced leader AUG added upstream and out-of-frame with the main open reading of recipient mRNAs. Overall, our data have provided evidence that another function of flatworm spliced leader trans-splicing is to provide some recipient mRNAs with an initiator methionine for translation initiation.  (+info)

A set of multicolored Photinus pyralis luciferase mutants for in vivo bioluminescence applications. (8/66)

Error-prone PCR was used to isolate Photinus pyralis luciferase mutants producing bright light in the red-orange region of the spectrum. All mutations were clustered in the beta5-alpha10-beta6 region of N-terminal subdomain B and appear to affect bioluminescence color by modulating the position of the Ser314-Leu319 mobile loop with respect to the putative active site. Two red variants (Q283R and S284G) and one orange mutant (S293P) contained a single substitution. Although the remaining orange variant contained two mutations, L287I mainly contributed to the color change. Emission spectra collected on whole cells at pH 7.0 revealed that while a single peak of lambdamax approximately 605 nm accounts for red light production by the Q283R and S284G variants, orange light results from the contribution of two peaks of lambdamax approximately 560 and 600 nm. All spectra underwent a red-shift when cells were assayed under acidic conditions, whereas a blue-shift was observed at pH 8.0, indicating that the internal pH of Escherichia coli is close to the external pH shortly after imposition of acid or alkaline stress. In addition, changes in assay pH led to bimodal emission spectra, lending support to the idea that bioluminescence color is determined by the relative contribution of yellow-green and red-orange peaks. The set of multicolored luciferase mutants described here may prove useful for a variety of applications including biosensing, pH monitoring, and tissue and animal imaging.  (+info)