Pili binding to asialo-GM1 on epithelial cells can mediate cytotoxicity or bacterial internalization by Pseudomonas aeruginosa. (33/2491)

The interaction of Pseudomonas aeruginosa type IV pili and the glycosphingolipid asialo-GM1 (aGM1) can mediate bacterial adherence to epithelial cells, but the steps subsequent to this adherence have not been elucidated. To investigate the result of the interaction of pili and aGM1, we used polarized epithelial monolayers of Madin-Darby canine kidney (MDCK) cells in culture, which contained little detectable aGM1 on their apical surface but were able to incorporate exogenous aGM1. Compared to an untreated monolayer, P. aeruginosa PA103 displayed an eightfold increase in association with and fivefold more cytotoxicity toward MDCK cells pretreated with aGM1. Cytotoxicity of either carrier-treated or aGM1-treated monolayers required the type III secreted protein ExoU. Asialo-GM1 pretreatment of MDCK monolayers likewise augmented bacterial internalization of an isogenic invasive strain approximately fourfold. These increases were not seen in monolayers treated with GM1, the sialyated form of the glycolipid, and were inhibited by treatment with an antibody to aGM1. Also, the aGM1-mediated adhesion, cytotoxicity, and internalization required intact type IV pili since nonpiliated PA103 mutants were unaffected by aGM1 pretreatment of MDCK cells. These results demonstrate that epithelial cell injury and bacterial internalization can proceed from the same adhesin-receptor interaction, and they indicate that P. aeruginosa exoproducts solely determine the steps subsequent to adhesion.  (+info)

Neisseria gonorrhoeae coordinately uses Pili and Opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. (34/2491)

This study was undertaken to examine concomitant roles of pili and colony opacity-associated proteins (Opa) in promoting Neisseria gonorrhoeae adherence to and invasion of human endometrial HEC-1-B cells. Adherence of N. gonorrhoeae to cultured HEC-1-B cells was saturable, even though organisms adhered to <50% of the cells. During 4 to 6 h of incubation, adherent mono- and diplococci formed microcolonies on the surfaces of the cells. Microvilli of the HEC-1-B cells adhered by their distal ends to individual cocci within the microcolonies. When the microcolonies grew from isogenic pilus-negative (P-) Opa-, P- Opa+, or P+ Opa- gonococci, microvilli did not elongate, and the colonies were not engulfed. In contrast, the microvilli markedly elongated during exposure to P+ Opa+ gonococci. The microvilli adhered to the organisms along their full lengths and appeared to actively participate in the engulfment of the microcolonies. Internalized microcolonies, with P+ Opa+ gonococci, contained dividing cocci and appeared to be surrounded by cell membrane but were not clearly within vacuoles. In contrast, degenerate individual organisms were within vacuoles. Low doses of chloramphenicol, which inhibits protein synthesis by both prokaryotes and eukaryotes, prevented the microvillar response to and internalization of the P+ Opa+ gonococci; higher doses caused internalization without microvillus activation. Cycloheximide and anisomycin, which inhibit only eukaryotic protein synthesis, caused dose-dependent enhancement of uptake. Cytochalasins reduced engulfment; colchicine had no effect. These results show that gonococci must express both pili and Opa to be engulfed efficiently by HEC-1-B cells.  (+info)

Structural basis of chaperone self-capping in P pilus biogenesis. (35/2491)

PapD is an immunoglobulin-like chaperone that mediates the assembly of P pili in uropathogenic strains of Escherichia coli. It binds and caps interactive surfaces on pilus subunits to prevent their premature associations in the periplasm. We elucidated the structural basis of a mechanism whereby PapD also interacts with itself, capping its own subunit binding surface. Crystal structures of dimeric forms of PapD revealed that this self-capping mechanism involves a rearrangement and ordering of the C2-D2 and F1-G1 loops upon dimerization which might ensure that a stable dimer is not formed in solution in spite of a relatively large dimer interface. An analysis of site directed mutations revealed that chaperone dimerization requires the same surface that is otherwise used to bind subunits.  (+info)

Molecular basis of the interaction of Salmonella with the intestinal mucosa. (36/2491)

Salmonella is one of the most extensively characterized bacterial pathogens and is a leading cause of bacterial gastroenteritis. Despite this, we are only just beginning to understand at a molecular level how Salmonella interacts with its mammalian hosts to cause disease. Studies during the past decade on the genetic basis of virulence of Salmonella have significantly advanced our understanding of the molecular basis of the host-pathogen interaction, yet many questions remain. In this review, we focus on the interaction of enterocolitis-causing salmonellae with the intestinal mucosa, since this is the initiating step for most infections caused by Salmonella. Animal and in vitro cell culture models for the interaction of these bacteria with the intestinal epithelium are reviewed, along with the bacterial genes that are thought to affect this interaction. Lastly, recent studies on the response of epithelial cells to Salmonella infection and how this might promote diarrhea are discussed.  (+info)

Eikenella corrodens phase variation involves a posttranslational event in pilus formation. (37/2491)

The human pathogen Eikenella corrodens synthesizes type IV pili and exhibits a phase variation involving the irreversible transition from piliated to nonpiliated variants. On solid medium, piliated variants form small (S-phase), corroding colonies whereas nonpiliated variants form large (L-phase), noncorroding colonies. We are studying the molecular basis of this phase variation in the clinical isolate E. corrodens VA1. A genomic fragment encoding the major type IV pilin was cloned from the S-phase variant of strain VA1. Sequence analysis of the fragment revealed four tandemly arranged potential open reading frames (ORFs), designated pilA1, pilA2, pilB, and hagA. Both pilA1 and pilA2 predict a type IV pilin. The protein predicted by pilB shares sequence identity with the Dichelobacter nodosus FimB fimbrial assembly protein. The protein predicted by hagA resembles a hemagglutinin. The region containing these four ORFs was designated the pilA locus. DNA hybridization and sequence analysis showed that the pilA locus of an L-phase variant of strain VA1 was identical to that of the S-phase variant. An abundant pilA1 transcript initiating upstream of pilA1 and terminating at a predicted hairpin structure between pilA1 and pilA2 was detected by several assays, as was a less abundant read-through transcript encompassing pilA1, pilA2, and pilB. Transcription from the pilA locus was nearly indistinguishable between S- and L-phase variants. Electron microscopy and immunochemical analysis showed that S-phase variants synthesize, export, and assemble pilin into pili. In contrast, L-phase variants synthesize pilin but do not export and assemble it into pili. These data suggest that a posttranslational event, possibly involving an alteration in pilin export and assembly, is responsible for phase variation in E. corrodens.  (+info)

Secretion of functional salivary peptide by Streptococcus gordonii which inhibits fimbria-mediated adhesion of Porphyromonas gingivalis. (38/2491)

Porphyromonas gingivalis, a putative periodontopathogen, can bind to human salivary components with its fimbriae. We have previously shown that fimbriae specifically bind to a peptide domain shared by a major salivary component, i.e., proline-rich (glyco)proteins (PRPs). The synthetic domain peptide PRP-C (pPRP-C) significantly inhibits the fimbrial binding to PRPs. In this study, a recombinant strain of Streptococcus gordonii secreting pPRP-C was generated as a model of a possible approach to prevent the oral colonization by the pathogen. A duplicate DNA fragment (prpC) encoding pPRP-C was obtained by self-complementary annealing of synthetic oligonucleotides. prpC was connected downstream to a promoter and a gene encoding a signal peptide of Streptococcus downei glucosyltransferase I in frame. The linked fragments were inserted into the plasmid pMNK-4 derived from pVA838. The constructed plasmid was inserted to produce the transformant S. gordonii G9B, which then successfully secreted recombinant pPRP-C (r-pPRP-C) of the expected size. The concentrated bacterial culture supernatant containing r-pPRP-C inhibited the binding of P. gingivalis cells and fimbriae to PRP1 in a dose-dependent manner up to 72 and 77%, respectively. The r-pPRP-C concentrate also inhibited the coaggregation of P. gingivalis with various streptococcal strains as effectively as synthetic pPRP-C in a dose-dependent manner. Collectively, pPRP-C was found to be able to prevent P. gingivalis adherence to salivary receptor protein and plaque-forming bacteria. These results suggest that this recombination approach with a nonperiodontopathic bacterium may be suitable for the therapeutic prevention of P. gingivalis adherence to the oral cavity.  (+info)

Characterization of an enterotoxigenic Escherichia coli strain from Africa expressing a putative colonization factor. (39/2491)

An enterotoxigenic Escherichia coli (ETEC) strain of serotype O114:H- that expressed both heat-labile and heat-stable enterotoxins and tested negative for colonization factors (CF) was isolated from a child with diarrhea in Egypt. This strain, WS0115A, induced hemagglutination of bovine erythrocytes and adhered to the enterocyte-like cell line Caco-2, suggesting that it may elaborate novel fimbriae. Surface-expressed antigen purified by differential ammonium sulfate precipitation and column chromatography yielded a single protein band with M(r) 14,800 when resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (16% polyacrylamide). A monoclonal antibody against this putative fimbrial antigen was generated and reacted with strain WS0115A and also with CS1-, CS17-, and CS19-positive strains in a dot blot assay. Reactivity was temperature dependent, with cells displaying reactivity when grown at 37 degrees C but not when grown at 22 degrees C. Immunoblot analysis of a fimbrial preparation from strain WS0115A showed that the monoclonal antibody reacted with a single protein band. Electron microscopy and immunoelectron microscopy revealed fimbria-like structures on the surface of strain WS0115A. These structures were rigid and measured 6.8 to 7.4 nm in diameter. Electrospray mass-spectrometric analysis showed that the mass of the purified fimbria was 14,965 Da. The N-terminal sequence of the fimbria established that it was a member of the CFA/I family, with sequence identity to the amino terminus of CS19, a new CF recently identified in India. Cumulatively, our results suggest that this fimbria is CS19. Screening of a collection of ETEC strains isolated from children with diarrhea in Egypt found that 4.2% of strains originally reported as CF negative were positive for this CF, suggesting that it is biologically relevant in the pathogenesis of ETEC.  (+info)

Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. (40/2491)

Antigen 43 (Ag43), the product of the flu gene, is a surface-displayed autotransporter protein of Escherichia coli. Ag43 is responsible for the autoaggregation and flocculation of static liquid cultures of many E. coli strains. The expression of Ag43 has been reported to be phase variable and controlled by the product of the oxyR gene. Type 1 fimbriae are thin adhesive thread-like surface organelles responsible for bacterial receptor recognition and tissue colonization. Like that of Ag43, the expression of type 1 fimbriae is phase variable. Interestingly, previous results have suggested that the expression of type 1 fimbriae and the expression of Ag43 are mutually exclusive. In the present report, we show, by use of well-defined mutants, that fimbriation abolishes Ag43-mediated autoaggregation but does not affect Ag43 expression. Autoaggregation is shown to require an intercellular Ag43-Ag43 interaction, and the physical presence of fimbriae on the cells seems to abrogate this interaction. The Ag43 or OxyR status does not appear to influence fimbria expression, and our results suggest that the expression of Ag43 and the expression of fimbriae are independent processes.  (+info)