Interleukin-5 is essential for vaccine-mediated immunity but not innate resistance to a filarial parasite. (1/140)

The study of protective immune mechanisms effective against filarial nematodes has been hampered by the inability of these important human pathogens to infect laboratory mice. Recently, Litomosoides sigmodontis, a natural parasite of rats, has been developed as a valuable model for the study of filarial infection. BALB/c mice are fully susceptible to infection with L. sigmodontis third-stage larvae and develop patent infection. In contrast, mice on the C57BL background are resistant, and parasites undergo only a single molt and do not mature to adulthood. We used interleukin-5 (IL-5)-deficient mice on the C57BL/6 background to address the role of IL-5 and eosinophils in the innate resistance of C57BL/6 mice. We found no differences in parasite survival between IL-5-deficient and C57BL/6 mice. However, when these mice were used for the analysis of vaccine-mediated immunity, a critical role for IL-5 was elucidated. Mice genetically deficient in IL-5 were unable to generate a protective immune response when vaccinated with irradiated larvae, whereas C57BL/6 mice were fully protected from challenge infection. These studies help to clarify the highly controversial role of eosinophils in filarial infection.  (+info)

Targeting of Wolbachia endobacteria in Litomosoides sigmodontis: comparison of tetracyclines with chloramphenicol, macrolides and ciprofloxacin. (2/140)

Endobacteria of the genus Wolbachia in filarial nematodes are related to Rickettsiaceae and can be depleted by tetracycline antibiotics. This depletion blocks female worm development as well as early embryogenesis, in contrast to the currently used microfilaricidal ivermectin which blocks only the last stage of embryogenesis. Since targeting Wolbachia is becoming an area of research for the treatment of human filariases, it was investigated if antibiotics other than tetracyclines are able to deplete Wolbachia from filariae. BALB/c mice infected with the rodent filaria Litomosoides sigmodontis were treated with erythromycin, chloramphenicol or ciprofloxacin. All drugs were well resorbed and resulted in serum levels clearly above breakpoint levels for bacteria susceptible to the respective antibiotic. However, contrary to tetracycline, none of these antibiotics depleted Wolbachia or altered worm development and fertility, as evidenced by immunohistology, immunoelectron microscopy and semiquantitative PCR.  (+info)

Phosphocholine-containing, zwitterionic glycosphingolipids of adult Onchocerca volvulus as highly conserved antigenic structures of parasitic nematodes. (3/140)

Human Onchocerca volvulus infection sera were found to recognize zwitterionic glycolipids of O. volvulus and to cross-react with those of other parasitic nematodes (Ascaris suum, Setaria digitata and Litomosoides sigmodontis). By the use of an epitope-specific monoclonal antibody, zwitterionic glycolipids of all these nematode species were observed to contain the antigenic determinant phosphocholine. A hyperimmune serum specific for arthro-series glycolipid structures reacted with the various neutral glycolipids of all these nematodes, which demonstrated that their oligosaccharide moieties belonged to the arthro-series of protostomial glycolipids. These results indicated that arthro-series glycosphingolipids carrying, in part, phosphocholine substituents, represent highly conserved, antigenic glycolipid markers of parasitic nematodes. Three glycolipid components of the O. volvulus zwitterionic fraction were structurally characterized by matrix-assisted laser-desorption/ionization time-of-flight MS, methylation analysis and exoglycosidase treatment. Their chemical structures were elucidated to be phosphocholine-6GlcNAc(beta1-3)Man(beta1-4)Glc(1-1)ceramide, GalNAc(beta1-4)[phosphocholine-6]GlcNAc(beta1-3)Man(beta1-4)Glc(1-1) ceramide and Gal(alpha1-3)GalNAc(beta1-4)[phosphocholine-6]GlcNAc(beta1-3)Man(beta 1-4)Glc(1-1)ceramide for the zwitterionic ceramide tri-, tetra- and penta-hexosides respectively. The ceramide composition was found to be dominated by 2-hydroxylated docosanoic (C(22h:0)), tricosanoic (C(23h:0)) and tetracosanoic (C(24h:0)) acids, and C(17) sphingosine (C(d17:1)) (where (h) is hydroxylated and (d) is dihydroxylated).  (+info)

Drastic reduction of a filarial infection in eosinophilic interleukin-5 transgenic mice. (4/140)

In order to establish the role of eosinophils in destroying parasites, transgenic mice have been used in experimental helminthiases but not in filariasis. Litomosoides sigmodontis offers a good opportunity for this study because it is the only filarial species that completes its life cycle in mice. Its development was compared in transgenic CBA/Ca mice overexpressing interleukin-5 (IL-5) and in wild-type mice following subcutaneous inoculation of 40 infective larvae. An acceleration of larval growth was observed in the IL-5 transgenic mice. However, the recovery rate of adult worms was considerably reduced in these mice, as evidenced 2 months postinoculation (p.i.). The reduction occurs between days 10 and 30 p.i. in the coelomic cavities. As early as day 10, spherical aggregates of eosinophils and macrophages are seen attached on live developing larvae (always similarly localized on the worm) in both wild-type and transgenic mice. However, on day 60 p.i., granulomas were found in the transgenic mice only, probably because of the higher density of eosinophils. Furthermore, on day 30 p.i., young filariae are seen trapped in granulomas, some of them surrounded by Splendore-Hoeppli deposits, which illustrates the release of the major basic protein by eosinophils. The high protection rate obtained (65%) is similar to that observed previously in BALB/c mice following vaccination with irradiated larvae. Both protocols have a common factor, the high production of IL-5 and eosinophilia. However, protection occurs later in primary infected transgenic mice because specific antibodies are not yet present at the time of challenge.  (+info)

Epidemiological studies on onchocerciasis by means of a new field technique. (5/140)

A new membrane filter concentration technique for the detection and quantification of Onchocerca volvulus microfilariae in skin snips was compared for sensitivity and efficiency with a widely used "standard" technique. A field study was carried out in five villages in an onchocerciasis focus north-east of the town of Sokode, Mo river valley, Togo. Use of the new technique resulted in a substantial rise in the observed prevalence and density of microfilariae.  (+info)

Analysis of genes expressed at the infective larval stage validates utility of Litomosoides sigmodontis as a murine model for filarial vaccine development. (6/140)

We used an expressed sequence tag approach to analyze genes expressed by the infective larvae of the rodent filarial parasite Litomosoides sigmodontis. One hundred fifty two new genes were identified, including several proposed as vaccine candidates in studies with human filarial parasites. Our findings have important implications for the use of L. sigmodontis as a model for filarial infection.  (+info)

Presence of phosphorylcholine on a filarial nematode protein influences immunoglobulin G subclass response to the molecule by an interleukin-10-dependent mechanism. (7/140)

The filarial nematode product ES-62 contains phosphorylcholine (PC) covalently attached to N-linked glycans. ES-62 induced high levels of immunoglobulin G1 (IgG1) antibodies, but no IgG2a, to non-PC epitopes of the molecule following subcutaneous injection into BALB/c mice. Conversely, mice given ES-62 lacking PC demonstrated significant production of both IgG subclasses. Thus, PC appears to block production of IgG2a antibodies to other epitopes on the parasite molecule. A role for interleukin-10 (IL-10) in this effect was shown by the ability of IL-10(-/-) mice to make an IgG2a antibody response to non-PC epitopes of ES-62.  (+info)

Interleukin-4 is essential for the control of microfilariae in murine infection with the filaria Litomosoides sigmodontis. (8/140)

Litomosoides sigmodontis is the only filaria which develops from infective larvae into microfilaria-producing adults in immunocompetent laboratory mice. In this study we report that interleukin-4 knockout (IL-4 KO) mice have an up to 100-fold-higher and a significantly prolonged microfilaremia compared to wild-type BALB/c mice, as well as 20 times more microfilariae in the thoracic cavity, the site of infection. While worm development and adult worm persistence were equivalent in IL-4 KO and wild-type mice, the fertility and length of adult female worms in IL-4 KO mice was clearly enhanced. The high susceptibility to microfilariae in IL-4 KO mice required the presence of adult worms in a full infection cycle since microfilariae loads did not differ much between IL-4 KO and wild-type mice when purified microfilariae were injected into mice. In addition, we found that eosinophilia was diminished and immunoglobulin E (IgE) was absent in IL-4 KO mice. IgE, however, does not seem to be the essential factor for microfilarial containment since microfilaremia was not elevated in B-cell KO mice. In conclusion, IL-4 is shown for the first time to be essential for the control of microfilarial loads but not of adult worm loads in a fully permissive murine filarial infection. IL-4 dependent effector pathways seem to operate on adult worms rather than directly on microfilariae.  (+info)