Fiber-degrading systems of different strains of the genus Fibrobacter. (1/25)

The S85 type strain of Fibrobacter succinogenes, a major ruminal fibrolytic species, was isolated 49 years ago from a bovine rumen and has been used since then as a model for extensive studies. To assess the validity of this model, we compared the cellulase- and xylanase-degrading activities of several other F. succinogenes strains originating from different ruminants, including recently isolated strains, and looked for the presence of 10 glycoside hydrolase genes previously identified in S85. The NR9 F. intestinalis type strain, representative of the second species of the genus, was also included in this study. DNA-DNA hybridization and 16S rRNA gene sequencing first classified the strains and provided the phylogenetic positions of isolates of both species. Cellulase and xylanase activity analyses revealed similar activity profiles for all F. succinogenes strains. However, the F(E) strain, phylogenetically close to S85, presented a poor xylanolytic system and weak specific activities. Furthermore, the HM2 strain, genetically distant from the other F. succinogenes isolates, displayed a larger cellulolytic profile on zymograms and higher cellulolytic specific activity. F. intestinalis NR9 presented a higher cellulolytic specific activity and a stronger extracellular xylanolytic activity. Almost all glycoside hydrolase genes studied were found in the F. succinogenes isolates by PCR, except in the HM2 strain, and few of them were detected in F. intestinalis NR9. As expected, the fibrolytic genes of strains of the genus Fibrobacter as well as the cellulase and xylanase activities are better conserved in closely related phylogenetic isolates.  (+info)

Use of community genome arrays (CGAs) to assess the effects of Acacia angustissima on rumen ecology. (2/25)

This research developed a community genome array (CGA) to assess the effects of Acacia angustissima on rumen microbiology. A. angustissima produces non-protein amino acids as well as tannins, which may be toxic to animals, and CGA was used to assess the effects of this plant on the ecology of the rumen. CGAs were developed using a 7.5 cmx2.5 cm nylon membrane format that included up to 96 bacterial genomes. It was possible to separately hybridize large numbers of membranes at once using this mini-membrane format. Pair-wise cross-hybridization experiments were conducted to determine the degree of cross-hybridization between strains; cross-hybridization occurred between strains of the same species, but little cross-reactivity was observed among different species. CGAs were successfully used to survey the microbial communities of animals consuming an A. angustissima containing diet but quantification was not precise. To properly quantify and validate the CGA, Fibrobacter and Ruminococcus populations were independently assessed using 16S rDNA probes to extracted rRNA. The CGA detected an increase in these populations as acacia increased in the diet, which was confirmed by rRNA analysis. There was a great deal of variation among strains of the same species in how they responded to A. angustissima. However, in general Selenomonas strains tended to be resistant to the tannins in the acacia while Butyrivibrio fibrisolvens was sensitive. On the other hand some species, like streptococci, varied. Streptococcus bovis-like strains were sensitive to an increase in acacia in the diet while Streptococcus gallolyticus-like strains were resistant. Strep. gallolyticus has independently been shown to be resistant to tannins. It is concluded that there is significant variation in tannin resistance between strains of the same species. This implies that there are specific molecular mechanisms at play that are independent of the phylogenetic position of the organism.  (+info)

Production of maltodextrin 1-phosphate by Fibrobacter succinogenes S85. (3/25)

We show for the first time the occurrence of maltodextrin-1-Phosphate (MD-1P) (DP2) in F. succinogenes S85, a rumen bacterium specialized in cellulolysis which is not able to use maltose and starch. MD-1P were found in intra and extracellular medium of resting cells incubated with glucose. We used 2D 1H NMR technique and TLC to identify their structure and quantify their production with time. It was also shown that these phosphorylated oligosaccharides originated both from exogenous glucose and endogenous glycogen.  (+info)

Reconstruction of the evolutionary history of the LexA-binding sequence. (4/25)

In recent years, the recognition sequence of the SOS repressor LexA protein has been identified for several bacterial clades, such as the Gram-positive, green non-sulfur bacteria and Cyanobacteria phyla, or the 'Alphaproteobacteria', 'Deltaproteobacteria' and 'Gammaproteobacteria' classes. Nevertheless, the evolutionary relationship among these sequences and the proteins that recognize them has not been analysed. Fibrobacter succinogenes is an anaerobic Gram-negative bacterium that branched from a common bacterial ancestor immediately before the Proteobacteria phylum. Taking advantage of its intermediate position in the phylogenetic tree, and in an effort to reconstruct the evolutionary history of LexA-binding sequences, the F. succinogenes lexA gene has been isolated and its product purified to identify its DNA recognition motif through electrophoretic mobility assays and footprinting experiments. After comparing the available LexA DNA-binding sequences with the F. succinogenes one, reported here, directed mutagenesis of the F. succinogenes LexA-binding sequence and phylogenetic analyses of LexA proteins have revealed the existence of two independent evolutionary lanes for the LexA recognition motif that emerged from the Gram-positive box: one generating the Cyanobacteria and 'Alphaproteobacteria' LexA-binding sequences, and the other giving rise to the F. succinogenes and Myxococcus xanthus ones, in a transitional step towards the current 'Gammaproteobacteria' LexA box. The contrast between the results reported here and the phylogenetic data available in the literature suggests that, some time after its emergence as a distinct bacterial class, the 'Alphaproteobacteria' lost its vertically received lexA gene, but received later through lateral gene transfer a new lexA gene belonging to either a cyanobacterium or a bacterial species closely related to this phylum. This constitutes the first report based on experimental evidence of lateral gene transfer in the evolution of a gene governing such a complex regulatory network as the bacterial SOS system.  (+info)

Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study. (5/25)

Wheat straw degradation by Fibrobacter succinogenes was monitored by nuclear magnetic resonance (NMR) spectroscopy and chemolytic methods to investigate the activity of an entire fibrolytic system on an intact complex substrate. In situ solid-state NMR with 13C cross-polarization magic angle spinning was used to monitor the modification of the composition and structure of lignocellulosic fibers (of 13C-enriched wheat straw) during the growth of bacteria on this substrate. There was no preferential degradation either of amorphous regions of cellulose versus crystalline regions or of cellulose versus hemicelluloses in wheat straw. This suggests either a simultaneous degradation of the amorphous and crystalline parts of cellulose and of cellulose and hemicelluloses by the enzymes or degradation at the surface at a molecular scale that cannot be detected by NMR. Liquid-state two-dimensional NMR experiments and chemolytic methods were used to analyze in detail the various sugars released into the culture medium. An integration of NMR signals enabled the quantification of oligosaccharides produced from wheat straw at various times of culture and showed the sequential activities of some of the fibrolytic enzymes of F. succinogenes S85 on wheat straw. In particular, acetylxylan esterase appeared to be more active than arabinofuranosidase, which was more active than alpha-glucuronidase. Finally, cellodextrins did not accumulate to a great extent in the culture medium.  (+info)

Oligosaccharide synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. (6/25)

In this article we compared the metabolism of phosphorylated and unphosphorylated oligosaccharides (cellodextrins and maltodextrins) in Fibrobacter succinogenes S85 resting cells incubated with the following substrates: glucose; cellobiose; a mixture of glucose and cellobiose; and cellulose. Intracellular and extracellular media were analysed by (1)H-NMR and by TLC. The first important finding is that no cellodextrins were found to accumulate in the extracellular media of cells, regardless of the substrate; this contrasts to what is generally reported in the literature. The second finding of this work is that maltodextrins of degree of polymerization > 2 are synthesized regardless of the substrate, and can be used by the bacteria. Maltotriose plays a key role in this metabolism of maltodextrin. Maltodextrin-1-phosphate was detected in all the incubations, and a new metabolite, corresponding to a phosphorylated glucose derivative, was produced in the extracellular medium when cells were incubated with cellulose. The accumulation of these phosphorylated sugars increased with the degree of polymerization of the substrate.  (+info)

Novel molecular features of the fibrolytic intestinal bacterium Fibrobacter intestinalis not shared with Fibrobacter succinogenes as determined by suppressive subtractive hybridization. (7/25)

Suppressive subtractive hybridization was conducted to identify unique genes coding for plant cell wall hydrolytic enzymes and other properties of the gastrointestinal bacterium Fibrobacter intestinalis DR7 not shared by Fibrobacter succinogenes S85. Subtractive clones from F. intestinalis were sequenced and assembled to form 712 nonredundant contigs with an average length of 525 bp. Of these, 55 sequences were unique to F. intestinalis. The remaining contigs contained 764 genes with BLASTX similarities to other proteins; of these, 80% had the highest similarities to proteins in F. succinogenes, including 30 that coded for carbohydrate active enzymes. The expression of 17 of these genes was verified by Northern dot blot analysis. Of genes not exhibiting BLASTX similarity to F. succinogenes, 30 encoded putative transposases, 6 encoded restriction modification genes, and 45% had highest similarities to proteins in other species of gastrointestinal bacteria, a finding suggestive of either horizontal gene transfer to F. intestinalis or gene loss from F. succinogenes. Analysis of contigs containing segments of two or more adjacent genes revealed that only 35% exhibited BLASTX similarity and were in the same orientation as those of F. succinogenes, indicating extensive chromosomal rearrangement. The expression of eight transposases, and three restriction-modification genes was confirmed by Northern dot blot analysis. These data clearly document the maintenance of carbohydrate active enzymes in F. intestinalis necessitated by the preponderance of polysaccharide substrates available in the ruminal environment. It also documents substantive changes in the genome from that of F. succinogenes, which may be related to the introduction of the array of transposase and restriction-modification genes.  (+info)

Localization of ruminal cellulolytic bacteria on plant fibrous materials as determined by fluorescence in situ hybridization and real-time PCR. (8/25)

To visualize and localize specific bacteria associated with plant materials, a new fluorescence in situ hybridization (FISH) protocol was established. By using this protocol, we successfully minimized the autofluorescence of orchard grass hay and detected rumen bacteria attached to the hay under a fluorescence microscope. Real-time PCR assays were also employed to quantitatively monitor the representative fibrolytic species Fibrobacter succinogenes and Ruminococcus flavefaciens and also total bacteria attached to the hay. F. succinogenes was found firmly attached to not only the cut edges but also undamaged inner surfaces of the hay. Cells of phylogenetic group 1 of F. succinogenes were detected on many stem and leaf sheath fragments of the hay, even on fragments on which few other bacteria were seen. Cells of phylogenetic group 2 of F. succinogenes were often detected on hay fragments coexisting with many other bacteria. On the basis of 16S rRNA gene copy number analysis, the numbers of bacteria attached to the leaf sheaths were higher than those attached to the stems (P<0.05). In addition, R. flavefaciens had a greater tendency than F. succinogenes to be found on the leaf sheath (P<0.01) with formation of many pits. F. succinogenes, particularly phylogenetic group 1, is suggested to possibly play an important role in fiber digestion, because it is clearly detectable by FISH and is the bacterium with the largest population size in the less easily degradable hay stem.  (+info)