In vivo effect of leukemia inhibitory factor (LIF) and an anti-LIF polyclonal antibody on murine embryo and fetal development following exposure at the time of transcervical blastocyst transfer. (25/189)

Leukemia inhibitory factor (LIF) enhances in vitro murine preimplantation development in a time- and dose-dependent fashion. Knockout experiments have demonstrated that endometrial LIF is essential for in vivo murine implantation. We assessed the impact of LIF and an anti-LIF polyclonal antibody (pab) on in vivo development and developed a novel and successful nonsurgical method of embryo transfer for this species, a transcervical blastocyst transfer technique. The objectives of this study were to evaluate the effects of LIF and the anti-LIF pab on 1) implantation, resorption, pregnancy, and viability rates and 2) the overall structural and skeletal development. Two-cell embryos were recovered from superovulated mated donors, cultured to the expanded blastocyst stage, and transferred transcervically into pseudopregnant recipients. Exposure to 5000 U/ml LIF resulted in significant increases in implantation, pregnancy, and viability rates compared with controls. A similar dose of pab produced overall inhibitory effects with a significant decrease in implantation rate. Paradoxically, lower pab doses resulted in significantly increased viability rates. Exposure to LIF had no effect on fetoplacental development. However, pab treatments had variable but significant negative effects on placental length, ossification of the exoccipital bone, and vertebral space width compared with controls. Exposure of murine blastocysts to LIF at the time of transcervical transfer resulted in pronounced positive effects on implantation and pregnancy rates without affecting fetal development. A similar pab dose dramatically reduced implantation and pregnancy rates; at high and low doses, pab produced deleterious effects on placental and skeletal development.  (+info)

Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. (26/189)

Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.  (+info)

Doublecortin is required in mice for lamination of the hippocampus but not the neocortex. (27/189)

Doublecortin (DCX) is a microtubule-associated protein that is required for normal neocortical and hippocampal development in humans. Mutations in the X-linked human DCX gene cause gross neocortical disorganization (lissencephaly or "smooth brain") in hemizygous males, whereas heterozygous females show a mosaic phenotype with a normal cortex as well as a second band of misplaced (heterotopic) neurons beneath the cortex ("double cortex syndrome"). We created a mouse carrying a targeted mutation in the Dcx gene. Hemizygous male Dcx mice show severe postnatal lethality; the few that survive to adulthood are variably fertile. Dcx mutant mice show neocortical lamination that is largely indistinguishable from wild type and show normal patterns of neocortical neurogenesis and neuronal migration. In contrast, the hippocampus of both heterozygous females and hemizygous males shows disrupted lamination that is most severe in the CA3 region. Behavioral tests show defects in context and cued conditioned fear tests, suggesting that deficits in hippocampal learning accompany the abnormal cytoarchitecture.  (+info)

The GCN2 eIF2alpha kinase is required for adaptation to amino acid deprivation in mice. (28/189)

The GCN2 eIF2alpha kinase is essential for activation of the general amino acid control pathway in yeast when one or more amino acids become limiting for growth. GCN2's function in mammals is unknown, but must differ, since mammals, unlike yeast, can synthesize only half of the standard 20 amino acids. To investigate the function of mammalian GCN2, we have generated a Gcn2(-/-) knockout strain of mice. Gcn2(-/-) mice are viable, fertile, and exhibit no phenotypic abnormalities under standard growth conditions. However, prenatal and neonatal mortalities are significantly increased in Gcn2(-/-) mice whose mothers were reared on leucine-, tryptophan-, or glycine-deficient diets during gestation. Leucine deprivation produced the most pronounced effect, with a 63% reduction in the expected number of viable neonatal mice. Cultured embryonic stem cells derived from Gcn2(-/-) mice failed to show the normal induction of eIF2alpha phosphorylation in cells deprived of leucine. To assess the biochemical effects of the loss of GCN2 in the whole animal, liver perfusion experiments were conducted. Histidine limitation in the presence of histidinol induced a twofold increase in the phosphorylation of eIF2alpha and a concomitant reduction in eIF2B activity in perfused livers from wild-type mice, but no changes in livers from Gcn2(-/-) mice.  (+info)

Gene structure and functional analysis of the mouse nidogen-2 gene: nidogen-2 is not essential for basement membrane formation in mice. (29/189)

Nidogens are highly conserved proteins in vertebrates and invertebrates and are found in almost all basement membranes. According to the classical hypothesis of basement membrane organization, nidogens connect the laminin and collagen IV networks, so stabilizing the basement membrane, and integrate other proteins. In mammals two nidogen proteins, nidogen-1 and nidogen-2, have been discovered. Nidogen-2 is typically enriched in endothelial basement membranes, whereas nidogen-1 shows broader localization in most basement membranes. Surprisingly, analysis of nidogen-1 gene knockout mice presented evidence that nidogen-1 is not essential for basement membrane formation and may be compensated for by nidogen-2. In order to assess the structure and in vivo function of the nidogen-2 gene in mice, we cloned the gene and determined its structure and chromosomal location. Next we analyzed mice carrying an insertional mutation in the nidogen-2 gene that was generated by the secretory gene trap approach. Our molecular and biochemical characterization identified the mutation as a phenotypic null allele. Nidogen-2-deficient mice show no overt abnormalities and are fertile, and basement membranes appear normal by ultrastructural analysis and immunostaining. Nidogen-2 deficiency does not lead to hemorrhages in mice as one may have expected. Our results show that nidogen-2 is not essential for basement membrane formation or maintenance.  (+info)

Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. (30/189)

Dopamine receptor subtypes D1 and D2, and many other seven-transmembrane receptors including adenosine receptor A2A, are colocalized in striatum of brain. These receptors stimulate or inhibit adenylyl cyclases (ACs) to produce distinct physiological and pharmacological responses and interact with each other synergistically or antagonistically at various levels. The identity of the AC isoform that is coupled to each of these receptors, however, remains unknown. To investigate the in vivo role of the type 5 adenylyl cyclase (AC5), which is preferentially expressed in striatum, mice deficient for the AC5 gene were generated. The genetic ablation of the AC5 gene eliminated >80% of forskolin-induced AC activity and 85-90% of AC activity stimulated by either D1 or A2A receptor agonists in striatum. However, D1- or A2A-specific pharmaco-behaviors were basically preserved, whereas the signal cascade from D2 to AC was completely abolished in AC5(-/-), and motor activity of AC5(-/-) was not suppressed by treatment of cataleptic doses of the antipsychotic drugs haloperidol and sulpiride. Interestingly, both haloperidol and clozapine at low doses remarkably increased the locomotion of AC5(-/-) in the open field test that was produced in part by a common mechanism that involved the increased activation of D1 dopamine receptors. Together, these results suggest that AC5 is the principal AC integrating signals from multiple receptors including D1, D2, and A2A in striatum and the cascade involving AC5 among diverse D2 signaling pathways is essential for neuroleptic effects of antipsychotic drugs.  (+info)

Genetic analysis of sorting nexins 1 and 2 reveals a redundant and essential function in mice. (31/189)

Sorting nexins 1 (Snx1) and 2 (Snx2) are homologues of the yeast gene VPS5 that is required for proper endosome-to-Golgi trafficking. The prevailing thought is that Vps5p is a component of a retrograde trafficking complex called the retromer. Genetic and biochemical evidence suggest mammals may have similar complexes, but their biological role is unknown. Furthermore, if SNX1 and SNX2 belong to such complexes, it is not known whether they act together or separately. Herein, we show that mice lacking SNX1 or SNX2 are viable and fertile, whereas embryos deficient in both proteins arrest at midgestation. These results demonstrate that SNX1 and SNX2 have a highly redundant and necessary function in the mouse. The phenotype of Snx1(-/-);Snx2(-/-) embryos is very similar to that of embryos lacking another retromer homologue, Hbeta58. This finding suggests that SNX1/SNX2 and Hbeta58 function in the same genetic pathway, providing additional evidence for the existence of mammalian complexes that are structurally similar to the yeast retromer. Furthermore, the viability of Snx1(-/-) and Snx2(-/-) mice demonstrates that it is not necessary for SNX1 and SNX2 to act together. Electron microscopy indicates morphological alterations of apical intracellular compartments in the Snx1(-/-);Snx2(-/-) yolk-sac visceral endoderm, suggesting SNX1 and SNX2 may be required for proper cellular trafficking. However, tetraploid aggregation experiments suggest that yolk sac defects cannot fully account for Snx1(-/-); Snx2(-/-) embryonic lethality. Furthermore, endocytosis of transferrin and low-density lipoprotein is unaffected in mutant primary embryonic fibroblasts, indicating that SNX1 and SNX2 are not essential for endocytosis in all cells. Although the two proteins demonstrate functional redundancy, Snx1(+/-);Snx2(-/-) mice display abnormalities not observed in Snx1(-/-);Snx2(+/-) mice, revealing that SNX1 and SNX2, or their genetic regulation, are not equivalent. Significantly, these studies represent the first mutations in the mammalian sorting nexin gene family and indicate that sorting nexins perform essential functions in mammals.  (+info)

Extreme prematurity in the UK and Denmark: population differences in viability. (32/189)

BACKGROUND: Previous studies comparing different models of neonatal intensive care have generally not been population based. The objective of this study was to compare the perinatal services of two total populations. METHODS: Observational study based on two geographically defined populations: the whole of Demark (some centralisation of neonatal intensive care but most delivered locally by small perinatal centres-48 in total) and the Trent Health Region of the UK (no formal centralisation however deliveries almost all focussed on 16 major hospitals with > 90% of the intensive care provided by 13 hospitals). Information was recorded about the course of every liveborn infant < 28 weeks gestation and or < 1000g birth weight and > or = 21 weeks gestation in 1994 and 1995. RESULTS: Despite having a smaller population the number of liveborn children meeting the study criteria was significantly higher in Trent (Demark 461 (3.3 per 1000 births, 95% confidence interval (CI) 3.0 to 3.6); Trent 572 (4.9 per 1000 births, 95% CI 4.5 to 5.3)). In Denmark 91.1% of these infants were admitted for intensive care and 85.5% in Trent. Despite significantly more Trent infants being exposed to antenatal steroids their outcome was worse (median Clinical Risk Index for Babies (CRIB) score 7 v 4; proportion receiving ventilation 87.6% v 40.0%; survival to discharge (uncorrected for disease severity) 42.3% v 35.0%). CONCLUSION: The population characteristics of Trent seemed to produce a higher prematurity rate compared to Denmark. These infants as a group appeared sicker and, despite more intensive care delivered by a more specialised service, outcomes were worse.  (+info)