Enteropathogenic bacteria in faecal swabs of young children fed on lactic acid-fermented cereal gruels. (17/6171)

The influence of consumption of a lactic acid-fermented cereal gruel togwa with pH < or = 4 on the presence of faecal enteric bacteria such as campylobacter, enterohaemorrhagic Escherichia coli (EHEC:O157), enterotoxigenic Escherichia coli (ETEC), salmonella and shigella was evaluated. Under 5 years old healthy children listed in an ascending order of age were alternatively assigned and given either a lactic-acid fermented cereal gruel togwa (test diet) or an unfermented cereal gruel uji (control diet) once a day for 13 consecutive days. The presence of the enteropathogens was examined in rectal swabs collected from the children at baseline (before feeding session started), on days 7 and 13, and additionally 14 days (follow-up day) after the feeding session had stopped. The swabs were cultured on to different optimal media for respective enteropathogen and confirmed by standard microbiological and serological methods. Campylobacter spp. dominated among the enteropathogens (62% out of total) followed by Salmonella spp., ETEC and Shigella spp. Children with isolated enteropathogens in the togwa group was significantly reduced (P < 0.001) from 27.6% at baseline to 7.8, 8.2 and 12.7% on days 7, 13 and follow-up day, respectively. The effect was more pronounced in those children taking togwa > 6 times during the study period. In the control group, there was a slight decrease from 16.7% at baseline to 11.4% on day 7 and 8.1% on day 13. On the follow-up day, enteropathogens were found in 22.6% of the children, which was significantly higher than in those children taking togwa > 6 times. We conclude, that regular consumption of togwa with pH < or = 4, once a day, three times a week may help to control intestinal colonization with potential diarrhoea-causing pathogens in young children.  (+info)

Potential for reduction of odorous compounds in swine manure through diet modification. (18/6171)

Recent public concern about air pollution from pork production units has prompted more research to develop methods to reduce and control odors. Masking agents, enzymes and bacterial preparations, feed additives, chemicals, oxidation processes, air scrubbers, biofilters, and new ventilation systems have been studied. Research relating the effects of the swine diet on manure odors has been scarce. Introducing feed additives to bind ammonia, change digesta pH, affect specific enzyme activity, and mask odors has been either costly or not consistently successful. Recent research emphasis has focused on manipulating the diet 1) to increase the nutrient utilization of the diet to reduce excretion products, 2) to enhance microbial metabolism in the lower digestive tract to reduce excretion of odor-causing compounds, and 3) to change the physical characteristics of urine and feces to reduce odor emissions. Primary odor-causing compounds evolve from excess degradable proteins and lack of specific fermentable carbohydrates during microbial fermentation. Reductions in ammonia emissions by 28 to 79% through diet modifications have been reported. Limited research on reduction of other odorous volatile organic compounds through diet modifications is promising. Use of synthetic amino acids with reduced intact protein levels in diets significantly reduces nitrogen excretions and odor production. Addition of nonstarch polysaccharides and specific oligosaccharides further alters the pathway of nitrogen excretion and reduces odor emission. Continued nutritional and microbial research to incorporate protein degradation products, especially sulfur-containing organics, with fermentable carbohydrates in the lower gastrointestinal tract of pigs will further control odors from manure.  (+info)

Degradation of two protein sources at three solids retention times in continuous culture. (19/6171)

Effects of solids retention times (SRT) of 10, 20, and 30 h on protein degradation and microbial metabolism were studied in continuous cultures of ruminal contents. Liquid dilution rate was constant across all retention times at .12 h(-1) (8.3 h mean retention time). Two semipurified diets that contained either soybean meal (SBM) or alfalfa hay (ALFH) as the sole nitrogen source were provided in amounts that decreased as SRT was increased. Digestion coefficients for DM, NDF, and ADF increased with increasing SRT. Digestion coefficients for nonstructural carbohydrates were higher in the SBM diet than in the ALFH diet but were not affected by SRT. Protein degradation in the ALFH diet averaged 51% and was unaffected by retention time. In the SBM diet, digestion of protein was 77, 78, and 96% at 10-, 20-, and 30-h retention times, respectively. Microbial efficiency decreased with increasing SRT and was greater for the SBM than for the ALFH diet. Efficiencies ranged from 30.6 to 35.7 and 20.8 to 29.2 g of N/kg of digested DM for the SBM and ALFH diets, respectively, as SRT decreased from 30 to 10 h. The diaminopimelic acid content of the microbes increased as SRT increased, indicating that changes in microbial species occurred owing to passage rates. From these results, we concluded that the digestibility decreases associated with increased ruminal turnover rates may be less for nonstructural carbohydrates and protein than for the fiber fractions.  (+info)

Homofermentative production of D- or L-lactate in metabolically engineered Escherichia coli RR1. (20/6171)

We investigated metabolic engineering of fermentation pathways in Escherichia coli for production of optically pure D- or L-lactate. Several pta mutant strains were examined, and a pta mutant of E. coli RR1 which was deficient in the phosphotransacetylase of the Pta-AckA pathway was found to metabolize glucose to D-lactate and to produce a small amount of succinate by-product under anaerobic conditions. An additional mutation in ppc made the mutant produce D-lactate like a homofermentative lactic acid bacterium. When the pta ppc double mutant was grown to higher biomass concentrations under aerobic conditions before it shifted to the anaerobic phase of D-lactate production, more than 62.2 g of D-lactate per liter was produced in 60 h, and the volumetric productivity was 1.04 g/liter/h. To examine whether the blocked acetate flux could be reoriented to a nonindigenous L-lactate pathway, an L-lactate dehydrogenase gene from Lactobacillus casei was introduced into a pta ldhA strain which lacked phosphotransacetylase and D-lactate dehydrogenase. This recombinant strain was able to metabolize glucose to L-lactate as the major fermentation product, and up to 45 g of L-lactate per liter was produced in 67 h. These results demonstrate that the central fermentation metabolism of E. coli can be reoriented to the production of D-lactate, an indigenous fermentation product, or to the production of L-lactate, a nonindigenous fermentation product.  (+info)

Analysis and dynamics of the chromosomal complements of wild sparkling-wine yeast strains. (21/6171)

We isolated Saccharomyces cerevisiae yeast strains that are able to carry out the second fermentation of sparkling wine from spontaneously fermenting musts in El Penedes (Spain) by specifically designed selection protocols. All of them (26 strains) showed one of two very similar mitochondrial DNA (mtDNA) restriction patterns, whereas their karyotypes differed. These strains showed high rates of karyotype instability, which were dependent on both the medium and the strain, during vegetative growth. In all cases, the mtDNA restriction pattern was conserved in strains kept under the same conditions. Analysis of different repetitive sequences in their genomes suggested that ribosomal DNA repeats play an important role in the changes in size observed in chromosome XII, whereas SUC genes or Ty elements did not show amplification or transposition processes that could be related to rearrangements of the chromosomes showing these sequences. Karyotype changes also occurred in monosporidic diploid derivatives. We propose that these changes originated mainly from ectopic recombination between repeated sequences interspersed in the genome. None of the rearranged karyotypes provided a selective advantage strong enough to allow the strains to displace the parental strains. The nature and frequency of these changes suggest that they may play an important role in the establishment and maintenance of the genetic diversity observed in S. cerevisiae wild populations.  (+info)

Isolation of ekatetrone, a new metabolite of producing variants of Streptomyces aureofaciens. (22/6171)

From a mixture of substances formed by producing strains of Streptomyces aureofaciens under conditions of submerged fermentation a new metabolite, ekatetrone, was isolated. Its isolation and basic physical and chemical data are described. Ekatetrone is a quinone derivative with a carboxamide group. In tests in vitro with cells of Ehrlich's ascites tumour evidence was provided that ekatetrone inhibits proteo- and nucleosynthesis.  (+info)

A large outbreak of hemolytic uremic syndrome caused by an unusual sorbitol-fermenting strain of Escherichia coli O157:H-. (23/6171)

Escherichia coli O157:H7 does not ferment sorbitol, a factor used to differentiate it from other E. coli. From December 1995 to March 1996, 28 children with hemolytic uremic syndrome in Bavaria, Germany, were identified; many had a sorbitol-fermenting (sf) E. coli O157:H- cultured. A case-control study showed a dose-response relationship between sausage consumption and illness. A second case-control study showed a relationship between mortadella and teewurst consumption and illness, particularly during December (mortadella odds ratio [OR], 10.5, P=.004; teewurst OR, 6.2, P=.02). Twelve sf O157:H- were characterized to determine clonality and virulence traits. The strains possessed the Stx2, eae, and EHEC-hlyA genes but were nonhemolytic on blood agar plates. The O157:H- isolates belonged to phage type 88 and had identical pulsed-field gel electrophoresis patterns. This outbreak was caused by sf E. coli O157:H-, which is not detectable by culture on sorbitol MacConkey's agar. Consumption of two sausages, including a raw beef-containing sausage, was statistically related to illness.  (+info)

Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. (24/6171)

Neutral red (NR) functioned as an electronophore or electron channel enabling either cells or membranes purified from Actinobacillus succinogenes to drive electron transfer and proton translocation by coupling fumarate reduction to succinate production. Electrically reduced NR, unlike methyl or benzyl viologen, bound to cell membranes, was not toxic, and chemically reduced NAD. The cell membrane of A. succinogenes contained high levels of benzyl viologen-linked hydrogenase (12.2 U), fumarate reductase (13.1 U), and diaphorase (109.7 U) activities. Fumarate reductase (24.5 U) displayed the highest activity with NR as the electron carrier, whereas hydrogenase (1.1 U) and diaphorase (0.8 U) did not. Proton translocation by whole cells was dependent on either electrically reduced NR or H2 as the electron donor and on the fumarate concentration. During the growth of Actinobacillus on glucose plus electrically reduced NR in an electrochemical bioreactor system versus on glucose alone, electrically reduced NR enhanced glucose consumption, growth, and succinate production by about 20% while it decreased acetate production by about 50%. The rate of fumarate reduction to succinate by purified membranes was twofold higher with electrically reduced NR than with hydrogen as the electron donor. The addition of 2-(n-heptyl)-4-hydroxyquinoline N-oxide to whole cells or purified membranes inhibited succinate production from H2 plus fumarate but not from electrically reduced NR plus fumarate. Thus, NR appears to replace the function of menaquinone in the fumarate reductase complex, and it enables A. succinogenes to utilize electricity as a significant source of metabolic reducing power.  (+info)