Fecal coliform elevated-temperature test: a physiological basis. (1/6171)

The physiological basis of the Eijkman elevated-temperature test for differentiating fecal from nonfecal coliforms was investigated. Manometric studies indicated that the inhibitory effect upon growth and metabolism in a nonfecal coliform at 44.5 degrees C involved cellular components common to both aerobic and fermentative metabolism of lactose. Radioactive substrate incorporation experiments implicated cell membrane function as a principal focus for temperature sensitivity at 44.5 degrees C. A temperature increase from 35 to 44.5 degrees C drastically reduced the rates of [14C]glucose uptake in nonfecal coliforms, whereas those of fecal coliforms were essentially unchanged. In addition, relatively low levels of nonfecal coliform beta-galactosidase activity coupled with thermal inactivation of this enzyme at a comparatively low temperature may also inhibit growth and metabolism of nonfecal coliforms at the elevated temperature.  (+info)

Haloanaerobacter salinarius sp. nov., a novel halophilic fermentative bacterium that reduces glycine-betaine to trimethylamine with hydrogen or serine as electron donors; emendation of the genus Haloanaerobacter. (2/6171)

A novel halophilic fermentative bacterium has been isolated from the black sediment below a gypsum crust and a microbial mat in hypersaline ponds of Mediterranean salterns. Morphologically, physiologically and genetically this organism belongs to the genus Haloanaerobacter. Haloanaerobacter strain SG 3903T (T = type strain) is composed of non-sporulating long flexible rods with peritrichous flagella, able to grow in the salinity range of 5-30% NaCl, with an optimum at 14-15%. The strain grows by fermenting carbohydrates or by using the Stickland reaction with either serine or H2 as electron donors and glycine-betaine as acceptor, which is reduced to trimethylamine. The two species described so far in the genus Haloanaerobacter are not capable of Stickland reaction with glycine-betaine + serine; however, Haloanaerobacter chitinovorans can use glycine-betaine with H2 as electron donor. Strain SG 3903T thus represents the first described strain in the genus Haloanaerobacter capable of the Stickland reaction with two amino acids. Although strain SG 3903T showed 67% DNA-DNA relatedness to H. chitinovorans, it is physiologically sufficiently different from the two described species to be considered as a new species which has been named Haloanaerobacter salinarius sp. nov.  (+info)

BE-31405, a new antifungal antibiotic produced by Penicillium minioluteum. I. Description of producing organism, fermentation, isolation, physico-chemical and biological properties. (3/6171)

A new antifungal antibiotic, BE-31405, was isolated from the culture broth of a fungal strain, Penicillium minioluteum F31405. BE-31405 was isolated by adsorption on high porous polymer resin (Diaion HP-20), followed by solvent extraction, precipitation and crystallization. BE-31405 showed potent growth inhibitory activity against pathogenic fungal strains such as Candida albicans, Candida glabrata and Cryptococcus neoformans, but did not show cytotoxic activity against mammalian cells such as P388 mouse leukemia. The mechanism studies indicated that BE-31405 inhibited the protein synthesis of C. albicans but not of mammalian cells.  (+info)

Diperamycin, a new antimicrobial antibiotic produced by Streptomyces griseoaurantiacus MK393-AF2. I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. (4/6171)

Antibacterial antibiotics, diperamycin (1) was produced in the culture broth of Streptomyces griseoaurantiacus MK393-AF2. Various spectroscopic analyses of 1 suggested that 1 belonged to a member of cyclic hexadepsipeptide antibiotic. Antibiotic 1 had potent inhibitory activity against various Gram-positive bacteria including Enterococcus seriolicida and methicillin-resistant Staphylococcus aureus.  (+info)

Mechanism of citrate metabolism in Lactococcus lactis: resistance against lactate toxicity at low pH. (5/6171)

Measurement of the flux through the citrate fermentation pathway in resting cells of Lactococcus lactis CRL264 grown in a pH-controlled fermentor at different pH values showed that the pathway was constitutively expressed, but its activity was significantly enhanced at low pH. The flux through the citrate-degrading pathway correlated with the magnitude of the membrane potential and pH gradient that were generated when citrate was added to the cells. The citrate degradation rate and proton motive force were significantly higher when glucose was metabolized at the same time, a phenomenon that could be mimicked by the addition of lactate, the end product of glucose metabolism. The results clearly demonstrate that citrate metabolism in L. lactis is a secondary proton motive force-generating pathway. Although the proton motive force generated by citrate in cells grown at low pH was of the same magnitude as that generated by glucose fermentation, citrate metabolism did not affect the growth rate of L. lactis in rich media. However, inhibition of growth by lactate was relieved when citrate also was present in the growth medium. Citrate did not relieve the inhibition by other weak acids, suggesting a specific role of the citrate transporter CitP in the relief of inhibition. The mechanism of citrate metabolism presented here provides an explanation for the resistance to lactate toxicity. It is suggested that the citrate metabolic pathway is induced under the acidic conditions of the late exponential growth phase to make the cells (more) resistant to the inhibitory effects of the fermentation product, lactate, that accumulates under these conditions.  (+info)

Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum. (6/6171)

We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.  (+info)

Temperature and pH conditions that prevail during fermentation of sausages are optimal for production of the antilisterial bacteriocin sakacin K. (7/6171)

Sakacin K is an antilisterial bacteriocin produced by Lactobacillus sake CTC 494, a strain isolated from Spanish dry fermented sausages. The biokinetics of cell growth and bacteriocin production of L. sake CTC 494 in vitro during laboratory fermentations were investigated by making use of MRS broth. The data obtained from the fermentations was used to set up a predictive model to describe the influence of the physical factors temperature and pH on microbial behavior. The model was validated successfully for all components. However, the specific bacteriocin production rate seemed to have an upper limit. Both cell growth and bacteriocin activity were very much influenced by changes in temperature and pH. The production of biomass was closely related to bacteriocin activity, indicating primary metabolite kinetics, but was not the only factor of importance. Acidity dramatically influenced both the production and the inactivation of sakacin K; the optimal pH for cell growth did not correspond to the pH for maximal sakacin K activity. Furthermore, cells grew well at 35 degrees C but no bacteriocin production could be detected at this temperature. L. sake CTC 494 shows special promise for implementation as a novel bacteriocin-producing sausage starter culture with antilisterial properties, considering the fact that the temperature and acidity conditions that prevail during the fermentation process of dry fermented sausages are optimal for the production of sakacin K.  (+info)

Metabolic engineering of a 1,2-propanediol pathway in Escherichia coli. (8/6171)

1,2-Propanediol (1,2-PD) is a major commodity chemical that is currently derived from propylene, a nonrenewable resource. A goal of our research is to develop fermentation routes to 1,2-PD from renewable resources. Here we report the production of enantiomerically pure R-1,2-PD from glucose in Escherichia coli expressing NADH-linked glycerol dehydrogenase genes (E. coli gldA or Klebsiella pneumoniae dhaD). We also show that E. coli overexpressing the E. coli methylglyoxal synthase gene (mgs) produced 1,2-PD. The expression of either glycerol dehydrogenase or methylglyoxal synthase resulted in the anaerobic production of approximately 0.25 g of 1,2-PD per liter. R-1,2-PD production was further improved to 0.7 g of 1,2-PD per liter when methylglyoxal synthase and glycerol dehydrogenase (gldA) were coexpressed. In vitro studies indicated that the route to R-1,2-PD involved the reduction of methylglyoxal to R-lactaldehyde by the recombinant glycerol dehydrogenase and the reduction of R-lactaldehyde to R-1, 2-PD by a native E. coli activity. We expect that R-1,2-PD production can be significantly improved through further metabolic and bioprocess engineering.  (+info)