Fenofibrate inhibits reactive amyloidosis in mice. (41/494)

OBJECTIVE: To examine the effects of the lipid-lowering agent fenofibrate on experimental AA amyloidosis and on serum amyloid A (SAA) levels. METHODS: Fenofibrate was administered orally in a mouse model of amyloidosis, which is induced by injections of amyloid-enhancing factor and Freund's complete adjuvant. Fenofibrate was given for 3 weeks, including a 1-week course before induction of amyloidosis. Splenic amyloid deposits were evaluated histologically, and SAA levels were measured. RESULTS: Fenofibrate inhibited the formation of splenic amyloid deposits and suppressed the elevation of SAA levels. CONCLUSION; Fenofibrate inhibits experimental amyloidosis by reducing levels of the precursor SAA.  (+info)

De novo expression of uncoupling protein 3 is associated to enhanced mitochondrial thioesterase-1 expression and fatty acid metabolism in liver of fenofibrate-treated rats. (42/494)

Uncoupling protein 3 (UCP3) is a member of the mitochondrial carrier superfamily, preferentially expressed in skeletal muscle. Its function is not fully understood and it is debated whether it uncouples oxidative phosphorylation as does UCP1 in brown adipose tissue. Recent evidences suggest a role for UCP3 in the flux of fatty acids in and out mitochondria and their utilization in concert with mitochondrial thioesterase-1 (MTE-1). In fact, mice overexpressing muscle UCP3 also show high levels of MTE-1. Fenofibrate is a hypolipidemic drug that prevents body weight gain in diet-induced obese rats and enhances lipid metabolism by activating peroxisome proliferator-activated receptors (PPARs). Because fatty acids and fenofibrate stimulate PPARs and in turn UCP3, we investigated whether UCP3 expression might be induced 'de novo' in situations of increased hepatic mitochondrial fatty acid utilization caused by a combined effect of a high-fat diet and fenofibrate treatment. We also investigated whether Mte-1 expression and beta-oxidation were affected. We show here that Ucp3 is induced in liver of fenofibrate-treated rats at the mRNA and protein level. Expression was restricted to hepatocytes and was unevenly distributed in the liver. No increase in cell proliferation, inflammatory or fibrotic responses was found. Mte-1 expression and mitochondrial beta-oxidation were upregulated. Thus, Ucp3 can be transactivated in tissues where it is normally silent and fenofibrate can attain this effect in liver. The data demonstrate that UCP3 is involved in fatty acid utilization and support the notion that UCP3 and MTE-1 are linked within the same metabolic pathway.  (+info)

Fenofibrate improves insulin sensitivity in connection with intramuscular lipid content, muscle fatty acid-binding protein, and beta-oxidation in skeletal muscle. (43/494)

We investigated the effect of fenofibrate, a peroxisome proliferator-activated receptor-alpha agonist, on insulin sensitivity including lipid metabolism in skeletal muscle. Six-week-old male Sprague-Dawley rats were divided into two groups: those fed a standard chow (control) or a fructose-rich chow (fructose-fed rats (FFRs)) for 6 weeks. FFRs were treated either with a vehicle or with 30 mg/kg per day of fenofibrate for the last 2 weeks. Insulin sensitivity (M-value) was estimated by the euglycemic hyperinsulinemic glucose clamp method. Fatty acid-binding protein (FABP) in skeletal muscle was measured by ELISA, and the expression of FABP mRNA was analyzed by semi-quantitative RT-PCR. The serum and muscle triglyceride (sTG and mTG) levels and the activity of 3-hydroxyacyl-CoA dehydrogenase (HADH), a beta-oxidation enzyme, in muscle were also determined. FFRs showed a lower M-value and higher blood pressure, sTG and mTG than did the control group. The mTG was correlated positively with sTG and negatively with the M-value. Fenofibrate treatment for 2 weeks did not change blood pressure but significantly improved the M-value, sTG and mTG. FABP content and mRNA in the soleus muscle were significantly elevated in FFRs compared with those in the control group. Fenofibrate treatment further increased FABP. The HADH activity was comparable between the control group and FFRs, but significantly increased by fenofibrate treatment. These results suggest that fenofibrate improves insulin sensitivity not only by lowering serum lipids and subsequent influx of fatty acids into muscles but also by reducing intramuscular lipid content via further induction of FABP and stimulation of beta-oxidation in muscles.  (+info)

Stimulation of peroxisome-proliferator-activated receptor alpha (PPAR alpha) attenuates cardiac fibrosis and endothelin-1 production in pressure-overloaded rat hearts. (44/494)

Endothelin-1 (ET-1) production is increased in hypertrophied hearts accompanied with fibrosis. ET-1 is a potent mitogen of fibroblasts and ET receptor antagonists are reported to inhibit the proliferation of fibroblasts and cardiac fibrosis. Peroxisome-proliferator-activated receptor alpha (PPAR alpha), one of the nuclear hormone receptors, suppresses activator protein-1 (AP-1), one of the nuclear transcription factors. Activation of PPAR alpha is reported to inhibit thrombin-induced ET-1 production by repressing the AP-1 signalling pathway in vascular endothelial cells. We investigated effects of the PPAR alpha activator fenofibrate (80 mg/kg per day, per os) on mRNA levels of ET-1, collagen type I and type III and histological features of myocardial fibrosis in hypertrophied rat hearts due to pressure-overload by abdominal aortic banding (AB). The treatment with fenofibrate or vehicle was started 7 days before the AB operation. Four days after the AB operation, fenofibrate treatment significantly reduced ET-1 mRNA expression compared with vehicle treatment in AB rat hearts. Collagen type I and type III mRNA expression, and interstitial and perivascular fibrosis were attenuated in the fenofibrate-treated AB rat group. Since the ET-1 gene has AP-1 response elements in the 5'-flanking region, it is suggested that myocardial fibrosis is effectively inhibited by fenofibrate through suppression of AP-1-mediated ET-1 gene augmentation in the pressure-overloaded heart caused by aortic banding in rats.  (+info)

Fenofibrate, a peroxisome proliferator-activated receptor alpha activator, suppresses experimental autoimmune myocarditis by stimulating the interleukin-10 pathway in rats. (45/494)

Experimental autoimmune myocarditis (EAM) in rats is an animal model of human giant cell myocarditis and postmyocarditis dilated cardiomyopathy. As the heart consumes large amounts of energy, heart diseases such as myocarditis and dilated cardiomyopathy are associated with abnormal fatty acid metabolism. Peroxisome proliferator-activated receptor alpha (PPARalpha) is a regulator of the oxidative degradation of fatty acids. To investigate the role of PPARalpha in EAM, fenofibrate (a PPARalpha activator) was administered to rats with EAM for 4 weeks. Reductions in the ratios of both ventricular weight to body weight and the area of inflammatory lesions to the total area of heart sections were observed in fenofibrate-treated rats when compared with controls. Fenofibrate ameliorated changes in serum albumin and sialic acid, which are markers of inflammation. Cardiac expression of interleukin-10 (IL-10) mRNA was more pronounced in the fenofibrate group than in the control group (1.3 +/- 0.2 vs 0.7 +/- 0.1; p < 0.01), and the area of intact myocardium correlated with the IL-10 mRNA level (p = 0.0297, r = 0.620). We suggest that PPARalpha activators may prevent the progression of myocarditis through increased expression of the gene encoding the anti-inflammatory cytokine IL-10, although the mechanisms involved remain to be determined.  (+info)

The effect of peroxisome proliferator-activated receptors alpha (PPARalpha) agonist, fenofibrate, on lipid peroxidation, total antioxidant capacity, and plasma paraoxonase 1 (PON 1) activity. (46/494)

The aim of this study was to investigate the effect of peroxisome proliferator activated receptors alpha agonist, fenofibrate, on the level of oxidative stress, total antioxidant capacity, and plasma paraoxonase 1 (PON 1) activity in the rat. The adult male Wistar rats received fenofibrate for 7 days. The drug was added to food at concentrations 0.005%, 0.05% and 0.5%, which corresponded to doses of 3, 30 and 300 mg/kg/day, respectively. Fenofibrate treatment dose-dependently reduced plasma concentration of malonyldialdehyde and 4-hydroxydialkenals. The level of these lipid peroxidation products in animals treated with 0.005%, 0.05% and 0.5% fenofibrate was lower than in control group by 52.8%, 62.7% and 87.1%, respectively. Lipid hydroperoxides in plasma decreased by 29.7%, 23.4% and 27.5% in these groups, respectively. The drug had no significant effect on total antioxidant capacity measured as ferric reducing ability of plasma (FRAP). Paraoxon-hydrolyzing activity (PON) of plasma paraoxonase was 81.5% lower in animals receiving 0.05% fenofibrate and 69.2% lower in rats treated with 0.5% fenofibrate than in control. Phenyl acetate hydrolyzing activity (arylesterase, AE) was reduced by 15.2%, 49.6% and 55.8% in rats receiving 0.005%, 0.05% and 0.5% fenofibrate, respectively. PON/AE ratio decreased following 0.05% and 0.5% fenofibrate by 64.9% and 30.4%, respectively. The drug had no significant effect on total plasma triglycerides and cholesterol concentrations. The results indicate that fenofibrate treatment favourably modulates oxidant-antioxidant balance and unfavourably affects plasma PON 1 activity in normolipidemic rats. These effects can contribute to the influence of PPARalpha agonists on pathological processes involved in atherogenesis.  (+info)

Reduction of atherosclerosis by the peroxisome proliferator-activated receptor alpha agonist fenofibrate in mice. (47/494)

Several clinical and angiographic intervention trials have shown that fibrate treatment leads to a reduction of the coronary events associated to atherosclerosis. Fibrates are ligands for peroxisome proliferator-activated receptor alpha (PPARalpha) that modulate risk factors related to atherosclerosis by acting at both systemic and vascular levels. Here, we investigated the effect of treatment with the PPARalpha agonist fenofibrate (FF) on the development of atherosclerotic lesions in apolipoprotein (apo) E-deficient mice and human apoA-I transgenic apoE-deficient (hapoA-I Tg x apoE-deficient) mice fed a Western diet. In apoE-deficient mice, plasma lipid levels were increased by FF treatment with no alteration in the cholesterol distribution profile. FF treatment did not reduce atherosclerotic lesion surface area in the aortic sinus of 5-month-old apoE-deficient mice. By contrast, FF treatment decreased total cholesterol and esterified cholesterol contents in descending aortas of these mice, an effect that was more pronounced in older mice exhibiting more advanced lesions. Furthermore, FF treatment reduced MCP-1 mRNA levels in the descending aortas of apoE-deficient mice, whereas ABCA-1 expression levels were maintained despite a significant reduction of aortic cholesterol content. In apoE-deficient mice expressing a human apoA-I transgene, FF increased human apoA-I plasma and hepatic mRNA levels without affecting plasma lipid levels. This increase in human apoA-I expression was accompanied by a significant reduction in the lesion surface area in the aortic sinus. These data indicate that the PPARalpha agonist fenofibrate reduces atherosclerosis in these animal models of atherosclerosis.  (+info)

Effects of fibrates on metabolism of statins in human hepatocytes. (48/494)

This study investigated the metabolic interaction between fibrates and statin hydroxy acids in human hepatocytes. Gemfibrozil (GFZ) modestly affected the formation of beta-oxidative products and CYP3A4-mediated oxidative metabolites of simvastatin hydroxy acid (SVA) but markedly inhibited the glucuronidation-mediated lactonization of SVA and the glucuronidation of a beta-oxidation product (IC(50) approximately 50 and 15 microM, respectively). In contrast, fenofibrate had a minimal effect on all the metabolic pathways of SVA. GFZ also significantly inhibited (IC(50) approximately 50-60 microM) the oxidation of cerivastatin (CVA) and rosuvastatin (RVA), but not of atorvastatin (AVA), while effectively decreasing (IC(50) approximately 30 to 60 microM) the lactonization of all three statins. As was observed previously with other statin hydroxy acids, RVA underwent significant glucuronidation to form an acyl glucuronide conjugate and lactonization to form RVA lactone in human liver microsomes and by UGT 1A1 and 1A3. While GFZ is not an inhibitor of CYP3A4, it is a competitive inhibitor (K(i) = 87 microM) of CYP2C8, a major catalyzing enzyme for CVA oxidation. These results suggest that 1) the pharmacokinetic interaction observed between GFZ and statins was not likely mediated by the inhibitory effect of GFZ on the beta-oxidation, but rather by its effect primarily on the glucuronidation and non-CYP3A-mediated oxidation of statin hydroxy acids, and 2) there is a potential difference between fibrates in their ability to affect the pharmacokinetics of statins, and among statins in their susceptibility to metabolic interactions with GFZ in humans.  (+info)